84 research outputs found
A vĂzleadási folyamat anyagspecifikus paramĂ©tereinek kutatása egyes Ă©lelmiszer/takarmány alapanyagok mestersĂ©ges szárĂtásának intenzifikálása cĂ©ljábĂłl = Research on material- depending parameters of the dewatering process in order to intensify the drying of some food/feedstuffs
A száradĂł anyagban lĂ©trejövĹ‘ nedvessĂ©gmozgást a termĂ©ny morfolĂłgiája determinálja. A vĂzleadás intenzitását konvekciĂłs körĂĽlmĂ©nyek között a felĂĽleti anyagátadási tĂ©nyezĹ‘, a nagyfrekvenciás tĂ©rben pedig a belsĹ‘ diffĂşziĂłs koefficiens határozza meg. A száradĂł anyagban a hĹ‘mĂ©rsĂ©klet eloszlása elsĹ‘sorban az energiaközlĂ©s mĂłdjának fĂĽggvĂ©nye. KonvektĂv szárĂtás esetĂ©n a jellemzĹ‘ belsĹ‘ hĹ‘mĂ©rsĂ©kletmezĹ‘ a nedvessĂ©geloszlással fordĂtott arányban áll. A nagyfrekvenciás tĂ©rben megvalĂłsĂtott szárĂtáskor az anyagban kialakulĂł hĹ‘mĂ©rsĂ©klet-eloszlás a mikrohullámĂş energia penetráciĂłjának fĂĽggvĂ©nye Ă©s egyenesen arányos a nedvessĂ©geloszlással. Az azonos vĂzleadási intenzitásnál a mikrohullámĂş tĂ©rben száradĂł anyagban az átlaghĹ‘mĂ©rsĂ©klet alacsonyabb Ă©s a hĹ‘mĂ©rsĂ©klet-eloszlás pedig egyenletesebb, mint konvektĂv energiaközlĂ©s esetĂ©n. A szárĂtási folyamat energiaigĂ©nye a csökkenĹ‘ száradási sebessĂ©g szakaszában az anyag-nedvessĂ©gtartalom csökkenĂ©sĂ©vel a mikrohullámĂş szárĂtáskor exponenciális, a konvektĂv szárĂtáskor pedig progresszĂv fĂĽggvĂ©ny szerint növekszik. A mezĹ‘gazdasági eredetű termĂ©kekre vonatkoztathatĂł anyagtörvĂ©nyek jelenlegi kutatottsági szintjĂ©n a termĂ©nyszárĂtás folyamatának szimuláciĂłjára a fĂ©lempirikus modellek alkalmasabbak. A vĂ©kony-rĂ©tegű konvektĂv szárĂtás impulzus-, energia- Ă©s anyagtranszportja legpontosabban mĂ©rlegegyenletekkel ĂrhatĂł le. A vastagrĂ©tegű konvektĂv halmazszárĂtás jĂłl modellezhetĹ‘ a nyomástĂ©nyezĹ‘vel mĂłdosĂtott Hukill-mĂłdszerrel. | Under convective conditions the intensity of the moisture transport into the ambient is the function of the surface mass transmission coefficient, while in the microwave field the absorption coefficient has the main influence on the component transport. The inner temperature zone depends on the energy transmission method. In the case of convective dehydration the typical inner heat map of drying substance is in concurrent proportion to the moisture distribution. Under microwave condition the inner temperature distribution is the function of the energy penetration and shows a direct proportion to the inner moisture map. On the basis of equal water get-off intensity the average temperature of material drying in microwave field is significantly lower and the inner temperature distribution is more moderate than that of convection. In the decreasing drying rate period the energy consumption significantly increases, but this trend in microwave field is purely exponential, while in convective conditions this exponential character is much more powerful. Considering the drying conditions of agricultural products, the application of semi-empirical models seems more adequate than complicated theoretical ones. On the basis of the conditions of the energy supply defined by the analysis of the dehydration process and the physical properties of the dried material, a modified Hukill model can precisely describe all the important convective drying features of the extended layer depth within an appropriate range
Rocking Up Digital Educational Methodology in Higher Education – Is Education 4.0 Here?
The COVID-19 pandemic disrupted education and required academics to shift to emergency remote education. The efficiency of the teaching learning process is determined by several factors in a technologically enhanced learning environment. As part of the improvement of education, educational methodologies and the rate of involvement of digital technology in the “business process” of teaching, the shift was an enforced step in the course of business process redesign (BPR). Technological developments forced pedagogy to change methodologies. The methodological and pedagogical effectiveness and success depend on how academics will apply the best practices and the know-how of emergency remote education and how the capabilities of applications, software and online shared knowledge can be exploited. This paper aims to review the background of educational methodologies and it outlines the pre-COVID-19 practices and strives to survey academics’ experiences of emergency remote teaching in higher education. Along with the “time space-group” three dimensional model of distance learning a slightly modified “time-workload-anxiety” 3D matrix of emergency remote digital education is introduced and considered from the lecturers’ perspective
Semi empirical models for drying of agricultural products by used structured artificial neural network
[EN] We compared a semi empirical and an empirical model. The empirical model is a multilayer ANN. The semi empirical model is a custom multilayer ANN. It is a structured model, and we define the structure by hand before the training of the network. The influence of the neuron numbers on the accuracy of the models was also investigated by statistical approach. We found that the custom multilayer ANNs developed like this, are suitable for modelling the drying process of agricultural materials. They also provide the ability to improve the applicability of the empirical models. Furthermore, the semi empirical model has a higher sensitivity on neuron number applied.Bessenyei, K.; Kurják, Z.; Beke, J. (2018). Semi empirical models for drying of agricultural products by used structured artificial neural network. En IDS 2018. 21st International Drying Symposium Proceedings. Editorial Universitat Politècnica de València. 403-410. https://doi.org/10.4995/IDS2018.2018.7571OCS40341
- …