13 research outputs found

    Ultraviolet Raman Spectroscopy of Single and Multi-layer Graphene

    Full text link
    We investigated Raman spectra of single-layer and multi-layer graphene under ultraviolet laser excitation at the wavelength of 325 nm. It was found that while the G peak of graphene remains pronounced in UV Raman spectra, the 2D band intensity undergoes severe quenching. The evolution of the ratio of the intensities of the G and 2D peaks, I(G)/I(2D), as the number of graphene layers n changes from n=1 to n=5, is different in UV Raman spectra from that in conventional visible Raman spectra excited at the 488 nm and 633 nm wavelengths. The 2D band under UV excitation shifts to larger wave numbers and is found near 2825 1/cm. The observed UV Raman features of graphene were explained by invoking the resonant scattering model. The obtained results contribute to the Raman nanometrology of graphene by providing an additional metric for determining the number of graphene layers and assessing its quality.Comment: 18 pages; 5 figures; submitted for publication on February 20, 200

    Thermoelectric properties of the bismuth telluride nanowires in the constant-relaxation-time approximation

    Full text link
    Electronic structure of bismuth telluride nanowires with the growth directions [110] and [015] is studied in the framework of anisotropic effective mass method using the parabolic band approximation. The components of the electron and hole effective mass tensor for six valleys are calculated for both growth directions. For a square nanowire, in the temperature range from 77 K to 500 K, the dependence of the Seebeck coefficient, the electron thermal and electrical conductivity as well as the figure of merit ZT on the nanowire thickness and on the excess hole concentration are investigated in the constant-relaxation-time approximation. The carrier confinement is shown to play essential role for square nanowires with thickness less than 30 nm. The confinement decreases both the carrier concentration and the thermal conductivity but increases the maximum value of Seebeck coefficient in contrast to the excess holes (impurities). The confinement effect is stronger for the direction [015] than for the direction [110] due to the carrier mass difference for these directions. The carrier confinement increases maximum value of ZT and shifts it towards high temperatures. For the p-type bismuth telluride nanowires with growth direction [110], the maximum value of the figure of merit is equal to 1.3, 1.6, and 2.8, correspondingly, at temperatures 310 K, 390 K, 480 K and the nanowire thicknesses 30 nm, 15 nm, and 7 nm. At the room temperature, the figure of merit equals 1.2, 1.3, and 1.7, respectively.Comment: 13 pages, 7 figures, 2 tables, typos added, added references for sections 2-

    Semi-analytical model for the Seebeck coefficient in semiconductors with isotropic DOS given by a power function

    No full text
    The relations for the Seebeck coefficient in a semiconductor with the isotropic density of states given by a power function are introduced within the scope of a semi-analytical model, which is based on the theoretical relations given by the foundations of the semiconductor physics as well as on experimentally defined temperature dependences of various semiconductor characteristics, but does not include any adjustable parameters. Between those characteristics the major role plays the intrinsic carrier concentration. It was demonstrated that although the introduced model is based on the simplified Maxwell-Boltzmann statistic, it is not compromised by this choice. A comparison with experimental data for five different semiconductors proves its ability to provide reliable predictions over a wide range of parameters (temperature, dopant type and concentration) not only for non-degenerated wide bandgap semiconductors (Si, Ge) but also for InAs, which represents partly degenerated narrow bandgap semiconductors with a non-parabolic density of states. Even in the case of a HgCdTe, with its extremely narrow bandgap and complex temperature dependence of the carrier concentration, the model is in good agreement with experimental data. The semi-analytical nature of the introduced model and its dependence on the abundance and reliability of the used experimental data were discussed on the example of Bi2Te3. Although the relative deficiency and controversy of the experimental results in this case significantly impede the model’s applicability, it is still able to give at least qualitative predictions, which are nevertheless better than the results of the calculation of the thermopower from first principles. Being primarily addressed to the experimental community, the model provides simple relations in the case of the parabolic non-intrinsic semiconductor for thermoelectric voltage and for optimal dopant concentration for the thermogenerator within the known working temperature range, which can be useful in real-life ‘energy harvesting’ applications
    corecore