62 research outputs found

    MicroRNA-183 Family Expression in Hair Cell Development and Requirement of MicroRNAs for Hair Cell Maintenance and Survival

    Get PDF
    MicroRNAs (miRNAs) post-transcriptionally repress complementary target gene expression and can contribute to cell differentiation. The coordinate expression of miRNA-183 family members (miR-183, miR-96, and miR-182) has been demonstrated in sensory cells of the mouse inner ear and other vertebrate sensory organs. To further examine hair cell miRNA expression in the mouse inner ear, we have analyzed miR-183 family expression in wild type animals and various mutants with defects in neurosensory development. miR-183 family member expression follows neurosensory cell specification, exhibits longitudinal (basal-apical) gradients in maturating cochlear hair cells, and is maintained in sensory neurons and most hair cells into adulthood. Depletion of hair cell miRNAs resulting from Dicer1 conditional knockout (CKO) in Atoh1-Cre transgenic mice leads to more disparate basal-apical gene expression profiles and eventual hair cell loss. Results suggest that hair cell miRNAs subdue cochlear gradient gene expression and are required for hair cell maintenance and survival

    Cell-Specific Transcriptome Analysis Shows That Adult Pillar and Deiters' Cells Express Genes Encoding Machinery for Specializations of Cochlear Hair Cells

    Get PDF
    The mammalian auditory sensory epithelium, the organ of Corti, is composed of hair cells and supporting cells. Hair cells contain specializations in the apical, basolateral and synaptic membranes. These specializations mediate mechanotransduction, electrical and mechanical activities and synaptic transmission. Supporting cells maintain homeostasis of the ionic and chemical environment of the cochlea and contribute to the stiffness of the cochlear partition. While spontaneous proliferation and transdifferentiation of supporting cells are the source of the regenerative response to replace lost hair cells in lower vertebrates, supporting cells in adult mammals no longer retain that capability. An important first step to revealing the basic biological properties of supporting cells is to characterize their cell-type specific transcriptomes. Using RNA-seq, we examined the transcriptomes of 1,000 pillar and 1,000 Deiters' cells, as well as the two types of hair cells, individually collected from adult CBA/J mouse cochleae using a suction pipette technique. Our goal was to determine whether pillar and Deiters' cells, the commonly targeted cells for hair cell replacement, express the genes known for encoding machinery for hair cell specializations in the apical, basolateral, and synaptic membranes. We showed that both pillar and Deiters' cells express these genes, with pillar cells being more similar to hair cells than Deiters' cells. The fact that adult pillar and Deiters' cells express the genes cognate to hair cell specializations provides a strong molecular basis for targeting these cells for mammalian hair cell replacement after hair cells are lost due to damage

    Transcript Annotation in FANTOM3: Mouse Gene Catalog Based on Physical cDNAs

    Get PDF
    The international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM2, comprised 60,770 full-length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein-coding genes, indicating that a number of cDNAs still remained to be collected and identified. To pursue the complete gene catalog that covers all predicted mouse genes, cloning and sequencing of full-length enriched cDNAs has been continued since FANTOM2. In FANTOM3, 42,031 newly isolated cDNAs were subjected to functional annotation, and the annotation of 4,347 FANTOM2 cDNAs was updated. To accomplish accurate functional annotation, we improved our automated annotation pipeline by introducing new coding sequence prediction programs and developed a Web-based annotation interface for simplifying the annotation procedures to reduce manual annotation errors. Automated coding sequence and function prediction was followed with manual curation and review by expert curators. A total of 102,801 full-length enriched mouse cDNAs were annotated. Out of 102,801 transcripts, 56,722 were functionally annotated as protein coding (including partial or truncated transcripts), providing to our knowledge the greatest current coverage of the mouse proteome by full-length cDNAs. The total number of distinct non-protein-coding transcripts increased to 34,030. The FANTOM3 annotation system, consisting of automated computational prediction, manual curation, and final expert curation, facilitated the comprehensive characterization of the mouse transcriptome, and could be applied to the transcriptomes of other species

    Expression of Neurog1 Instead of Atoh1 Can Partially Rescue Organ of Corti Cell Survival

    Get PDF
    In the mammalian inner ear neurosensory cell fate depends on three closely related transcription factors, Atoh1 for hair cells and Neurog1 and Neurod1 for neurons. We have previously shown that neuronal cell fate can be altered towards hair cell fate by eliminating Neurod1 mediated repression of Atoh1 expression in neurons. To test whether a similar plasticity is present in hair cell fate commitment, we have generated a knockin (KI) mouse line (Atoh1KINeurog1) in which Atoh1 is replaced by Neurog1. Expression of Neurog1 under Atoh1 promoter control alters the cellular gene expression pattern, differentiation and survival of hair cell precursors in both heterozygous (Atoh1+/KINeurog1) and homozygous (Atoh1KINeurog1/KINeurog1) KI mice. Homozygous KI mice develop patches of organ of Corti precursor cells that express Neurog1, Neurod1, several prosensory genes and neurotrophins. In addition, these patches of cells receive afferent and efferent processes. Some cells among these patches form multiple microvilli but no stereocilia. Importantly, Neurog1 expressing mutants differ from Atoh1 null mutants, as they have intermittent formation of organ of Corti-like patches, opposed to a complete β€˜flat epithelium’ in the absence of Atoh1. In heterozygous KI mice co-expression of Atoh1 and Neurog1 results in change in fate and patterning of some hair cells and supporting cells in addition to the abnormal hair cell polarity in the later stages of development. This differs from haploinsufficiency of Atoh1 (Pax2cre; Atoh1f/+), indicating the effect of Neurog1 expression in developing hair cells. Our data suggest that Atoh1KINeurog1 can provide some degree of functional support for survival of organ of Corti cells. In contrast to the previously demonstrated fate plasticity of neurons to differentiate as hair cells, hair cell precursors can be maintained for a limited time by Neurog1 but do not transdifferentiate as neurons

    Proteomic analysis of the organ of Corti using nanoscale liquid chromatography coupled with tandem mass spectrometry

    Get PDF
    Abstract: The organ of Corti (OC) in the cochlea plays an essential role in auditory signal transduction in the inner ear. For its minute size and trace amount of proteins, the identification of the molecules in pathophysiologic processes in the bone-encapsulated OC requires both delicate separation and a highly sensitive analytical tool. Previously, we reported the development of a high resolution metal-free nanoscale liquid chromatography system for highly sensitive phosphoproteomic analysis. Here this system was coupled with a LTQ-Orbitrap XL mass spectrometer to investigate the OC proteome from normal hearing FVB/N male mice. A total of 628 proteins were identified from six replicates of single LC-MS/MS analysis, with a false discovery rate of 1 % using the decoy database approach by the OMSSA search engine. This is currently the largest proteome dataset for the OC. A total of 11 proteins, including cochlin, myosin VI, and myosin IX, were identified that when defective are associated with hearing impairment or loss. This studyInt. J. Mol. Sci. 2012, 13 8172 demonstrated the effectiveness of our nanoLC-MS/MS platform for sensitive identificatio

    Lizard and frog prestin: evolutionary insight into functional changes.

    Get PDF
    The plasma membrane of mammalian cochlear outer hair cells contains prestin, a unique motor protein. Prestin is the fifth member of the solute carrier protein 26A family. Orthologs of prestin are also found in the ear of non-mammalian vertebrates such as zebrafish and chicken. However, these orthologs are electrogenic anion exchangers/transporters with no motor function. Amphibian and reptilian lineages represent phylogenic branches in the evolution of tetrapods and subsequent amniotes. Comparison of the peptide sequences and functional properties of these prestin orthologs offer new insights into prestin evolution. With the recent availability of the lizard and frog genome sequences, we examined amino acid sequence and function of lizard and frog prestins to determine how they are functionally and structurally different from prestins of mammals and other non-mammals. Somatic motility, voltage-dependent nonlinear capacitance (NLC), the two hallmarks of prestin function, and transport capability were measured in transfected human embryonic kidney cells using voltage-clamp and radioisotope techniques. We demonstrated that while the transport capability of lizard and frog prestin was compatible to that of chicken prestin, the NLC of lizard prestin was more robust than that of chicken's and was close to that of platypus. However, unlike platypus prestin which has acquired motor capability, lizard or frog prestin did not demonstrate motor capability. Lizard and frog prestins do not possess the same 11-amino-acid motif that is likely the structural adaptation for motor function in mammals. Thus, lizard and frog prestins appear to be functionally more advanced than that of chicken prestin, although motor capability is not yet acquired

    Transcriptome-wide comparison of the impact of Atoh1 and miR-183 family on pluripotent stem cells and multipotent otic progenitor cells

    No full text
    <div><p>Over 5% of the global population suffers from disabling hearing loss caused by multiple factors including aging, noise exposure, genetic predisposition, or use of ototoxic drugs. Sensorineural hearing loss is often caused by the loss of sensory hair cells (HCs) of the inner ear. A barrier to hearing restoration after HC loss is the limited ability of mammalian auditory HCs to spontaneously regenerate. Understanding the molecular mechanisms orchestrating HC development is expected to facilitate cell replacement therapies. Multiple events are known to be essential for proper HC development including the expression of Atoh1 transcription factor and the miR-183 family. We have developed a series of vectors expressing the miR-183 family and/or Atoh1 that was used to transfect two different developmental cell models: pluripotent mouse embryonic stem cells (mESCs) and immortalized multipotent otic progenitor (iMOP) cells representing an advanced developmental stage. Transcriptome profiling of transfected cells show that the impact of Atoh1 is contextually dependent with more HC-specific effects on iMOP cells. miR-183 family expression in combination with Atoh1 not only appears to fine tune gene expression in favor of HC fate, but is also required for the expression of some HC-specific genes. Overall, the work provides novel insight into the combined role of Atoh1 and the miR-183 family during HC development that may ultimately inform strategies to promote HC regeneration or maintenance.</p></div
    • …
    corecore