16 research outputs found
Microsatellite and Mitochondrial Data Provide Evidence for a Single Major Introduction for the Neartic Leafhopper Scaphoideus titanus in Europe
Scaphoideus titanus, a leafhopper native to North America and invasive in Europe, is the vector of the Flavescence dorée phytoplasma, the causal agent of the most important form of grapevine yellows in European vineyards. We studied 10 polymorphic microsatellite loci and a 623 bp fragment of the mitochondrial cytochrome oxidase II gene in native S. titanus from north-eastern America and introduced European populations, to elucidate the colonization scenario. Consistent with their recent history, invasive European populations were less genetically diverse than American populations for both types of markers, suggesting a recent bottleneck. Significant isolation by distance was detected between American populations but not between European populations. None of the European mitochondrial haplotypes was found in the American vineyards, from which they are assumed to have originated. The precise source of the invasive S. titanus populations therefore remains unclear. Nevertheless, the high heterozygosity of North-East American populations (which contained 92% of the observed alleles) suggests that this region is part of the native range of S. titanus. Clustering population genetics analyses with microsatellite and mitochondrial data suggested that European populations originated from a single introduction event. Most of the introduced populations clustered with populations from Long Island, the Atlantic Coast winegrowing region in which Vitis aestivalis occurs
Carbon dioxide-induced changes in beech foliage cause female beech weevil larvae to feed in a compensatory manner.
The phenology of Fagus sylvatica was unaffected by exposure to an atmosphere of elevated CO2 (600 μL L-1) after two years of fumigation. Non-significant changes in nitrogen and phenolic content of the leaves decreased the nutritional status of beech for female larvae in elevated CO2 such that they responded by eating in a compensatory manner; males were unaffected. Rates of development, mortality and adult biomass of Rhynchaenus fagi were no different from those in ambient CO2 concentrations (355 μL L -1). It is possible that, with the changes in leaf chemistry affecting the females, fecundity will be altered, with important consequences for populations of beech weevil
Biological control as an invasion process: disturbance and propagule pressure affect the invasion success of Lythrum salicaria biological control agents
Understanding the mechanisms behind the successful colonization and establishment of introduced species is important for both preventing the invasion of unwanted species and improving release programs for biological control agents. However, it is often not possible to determine important introduction details, such as date, number of organisms, and introduction location when examining factors affecting invasion success. Here we use biological control introduction data to assess the role of propagule pressure, disturbance, and residence time on invasion success of four herbivorous insect species introduced for the control of the invasive wetland plant, Lythrum salicaria, in the Columbia River Estuary. Two sets of field surveys determined persistence at prior release sites, colonization of new sites, and abundance within colonized sites. We quantified propagule pressure in four ways to examine the effect of different measurements. These included three measurements of introduction size (proximity to introduction site, introduction size at a local scale, and introduction size at a regional scale) and one measure of introduction number (number of introduction events in a region). Disturbance was examined along a tidal inundation gradient (distance from river mouth) and as habitat (island or mainland). Statistical models and model averaging were used to determine which factors were driving invasion success. In this study we found: (1) sparse evidence for the positive influence of propagule pressure on invasion success; (2) disturbance can negatively affect the invasion success of herbivorous insects; (3) the effects of disturbance and propagule pressure are species specific and vary among invasion stages, and (4) not all measures of propagule pressure show the same results, therefore single measures and proxies should be used cautiously