9 research outputs found

    The Vehicle, November 1960, Vol. 3 no. 1

    Get PDF
    CONTENTS To the ReaderStaffpage 2 N’ = N : 1Donald C. Blairpage 3 ConsistencyDonald C. Blairpage 3 Unto MeLinda Kay Campbellpage 4 The Meek Shall InheritE. J. B. page 5 The Infinite QuestLarry W. Dudleypage 6 Dreamer’s DawnMike Hindmanpage 7 BirthNancy Coepage 7 The Lost DutchmanDonald C. Blairpage 8 W. E. Noonan IRobert S. Hodgepage 8 A Soldier’s OrdealDonald E. Shephardsonpage 9 Personal PossessionMary Beilpage 11 Thine The GloryDonald C. Blairpage 12 The ThornJan Holstlawpage 13 A Lord’s Day MorningLinda Campbellpage 14 Observations of a 6-Year-OldTom McPeakpage 15 Jewels of TimeJudith Jerintspage 16 LavenderE. J. B. page 16https://thekeep.eiu.edu/vehicle/1008/thumbnail.jp

    Establishing a New Platform to Investigate the Efficacy of Oncolytic Virotherapy in a Human Ex Vivo Peritoneal Carcinomatosis Model

    No full text
    Oncolytic virotherapy constitutes a promising treatment option for many solid cancers, including peritoneal carcinomatosis (PC), which still represents a terminal stage of many types of tumors. To date, the in vitro efficacy of oncolytic viruses is mostly tested in 2D-cultured tumor cell lines due to the lack of realistic 3D in vitro tumor models. We have investigated the feasibility of virotherapy as a treatment option for PC in a human ex vivo peritoneum co-culture model. Human HT-29 cancer cells stably expressing marker genes GFP and firefly luciferase (GFP/luc) were cultured on human peritoneum and infected with two prototypic oncolytic viruses (GLV-0b347 and MeV-DsRed). Both viral constructs were able to infect HT-29 cells in patient-derived peritoneum with high tumor specificity. Over time, both GFP signal and luciferase activity decreased substantially, thereby indicating successful virus-induced oncolysis. Furthermore, immunohistochemistry stainings showed specific virotherapeutic infections of HT-29 cells and effective tumor cell lysis in infected co-cultures. Thus, the PC model established here provides a clinically relevant screening platform to evaluate the therapeutic efficacy of virotherapeutic compounds and also to investigate, in an autologous setting, the immunostimulatory potential of oncolytic viruses for PC in a unique human model system superior to standard 2D in vitro models

    Establishing a New Platform to Investigate the Efficacy of Oncolytic Virotherapy in a Human Ex Vivo Peritoneal Carcinomatosis Model

    No full text
    Oncolytic virotherapy constitutes a promising treatment option for many solid cancers, including peritoneal carcinomatosis (PC), which still represents a terminal stage of many types of tumors. To date, the in vitro efficacy of oncolytic viruses is mostly tested in 2D-cultured tumor cell lines due to the lack of realistic 3D in vitro tumor models. We have investigated the feasibility of virotherapy as a treatment option for PC in a human ex vivo peritoneum co-culture model. Human HT-29 cancer cells stably expressing marker genes GFP and firefly luciferase (GFP/luc) were cultured on human peritoneum and infected with two prototypic oncolytic viruses (GLV-0b347 and MeV-DsRed). Both viral constructs were able to infect HT-29 cells in patient-derived peritoneum with high tumor specificity. Over time, both GFP signal and luciferase activity decreased substantially, thereby indicating successful virus-induced oncolysis. Furthermore, immunohistochemistry stainings showed specific virotherapeutic infections of HT-29 cells and effective tumor cell lysis in infected co-cultures. Thus, the PC model established here provides a clinically relevant screening platform to evaluate the therapeutic efficacy of virotherapeutic compounds and also to investigate, in an autologous setting, the immunostimulatory potential of oncolytic viruses for PC in a unique human model system superior to standard 2D in vitro models

    From Accutane to Zonite: A History of Dangerous Drugs & Devices Marketed to Women

    No full text
    corecore