18 research outputs found

    Identification of Genes with Allelic Imbalance on 6p Associated with Nasopharyngeal Carcinoma in Southern Chinese

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a malignancy of epithelial origin. The etiology of NPC is complex and includes multiple genetic and environmental factors. We employed case-control analysis to study the association of chromosome 6p regions with NPC. In total, 360 subjects and 360 healthy controls were included, and 233 single nucleotide polymorphisms (SNPs) on 6p were examined. Significant single-marker associations were found for SNPs rs2267633 (pβ€Š=β€Š4.49Γ—10βˆ’5), rs2076483 (most significant, pβ€Š=β€Š3.36Γ—10βˆ’5), and rs29230 (pβ€Š=β€Š1.43Γ—10βˆ’4). The highly associated genes were the gamma-amino butyric acid B receptor 1 (GABBR1), human leukocyte antigen (HLA-A), and HLA complex group 9 (HCG9). Haplotypic associations were found for haplotypes AAA (located within GABBR1, p-value β€Š=β€Š6.46Γ—10βˆ’5) and TT (located within HLA-A, pβ€Š=β€Š0.0014). Further investigation of the homozygous genotype frequencies between cases and controls suggested that micro-deletion regions occur in GABBR1 and neural precursor cell expressed developmentally down-regulated 9 (NEDD9). Quantitative real-time polymerase chain reaction (qPCR) using 11 pairs of NPC biopsy samples confirmed the significant decline in GABBR1 and NEDD9 mRNA expression in the cancer tissues compared to the adjacent non-tumor tissue (p<0.05). Our study demonstrates that multiple chromosome 6p susceptibility loci contribute to the risk of NPC, possibly though GABBR1 and NEDD9 loss of function

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    Xyloketal B, a marine compound, acts on a network of molecular proteins and regulates the&nbsp;activity and expression of rat cytochrome P450 3a: a bioinformatic and animal study

    No full text
    Junhui Su,1&ndash;3,* Cui Chang,3,* Qi Xiang,1,2 Zhi-Wei Zhou,4 Rong Luo,5 Lun Yang,6 Zhi-Xu He,7 Hongtu Yang,2,3 Jianan Li,1 Yu&nbsp;Bei,1 Jinmei Xu,1,2 Minjing Zhang,1 Qihao&nbsp;Zhang,1 Zhijian Su,1 Yadong Huang,1 Jiyan Pang,5 Shu-Feng Zhou4,7 1Institute&nbsp;of&nbsp;Biomedicine and Guangdong Provincial Key Laboratory of&nbsp;Bioengineering Medicine, 2Department of Pharmacy, Jinan University, Guangzhou, 3The People&rsquo;s Hospital of Shenzhen City, Shenzhen, People&rsquo;s Republic of China; 4Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; 5School of&nbsp;Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 6Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 7Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, People&rsquo;s Republic of China *These two authors contributed equally to&nbsp;this work Abstract: Natural compounds are becoming popular for the treatment of illnesses and health promotion, but the mechanisms of action and safety profiles are often unknown. Xyloketal B (XKB) is a novel marine compound isolated from the mangrove fungus Xylaria sp., with potent antioxidative, neuroprotective, and cardioprotective effects. However, its molecular targets and effects on drug-metabolizing enzymes are unknown. This study aimed to investigate the potential molecular targets of XKB using bioinformatic approaches and to examine the effect of XKB on the expression and activity of rat cytochrome P450 3a (Cyp3a) subfamily members using midazolam as a model probe. DDI-CPI, a server that can predict drug&ndash;drug interactions via the chemical&ndash;protein interactome, was employed to predict the targets of XKB, and the Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to analyze the pathways of the predicted targets of XKB. Homology modeling was performed using the Discovery Studio program 3.1. The activity and expression of rat hepatic Cyp3a were examined after the rats were treated with XKB at 7 and 14 mg/kg for 8 consecutive days. Rat plasma concentrations of midazolam and its metabolite 1&#39;-OH-midazolam were determined using a validated high-performance liquid chromatographic method. Bioinformatic analysis showed that there were over 324 functional proteins and 61 related signaling pathways that were potentially regulated by XKB. A molecular docking study showed that XKB bound to the active site of human cytochrome P450 3A4 and rat Cyp3a2 homology model via the formation of hydrogen bonds. The in vivo study showed that oral administration of XKB at 14 mg/kg to rats for 8 days significantly increased the area under the plasma concentration-time curve (AUC) of midazolam, with a concomitant decrease in the plasma clearance and AUC ratio of 1&#39;-OH-midazolam over midazolam. Further, oral administration of 14 mg/kg XKB for 8 days markedly reduced the activity and expression of hepatic Cyp3a in rats. Taken together, the results show that XKB could regulate networks of molecular proteins and related signaling pathways and that XKB downregulated hepatic Cyp3a in rats. XKB might cause drug interactions through modulation of the activity and expression of Cyp3a members. More studies are warranted to confirm the mechanisms of action of XKB and to investigate the underlying mechanism for the regulating effect of XKB on Cyp3a subfamily members. Keywords: Xyloketal B, molecular target, cytochrome P450 3A, DDI-CPI tool, DAVID, midazolam, pharmacokinetics, rat, bioinformatic

    Memory and Executive Screening (MES): a brief cognitive test for detecting mild cognitive impairment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mild cognitive impairment (MCI), defined as a transitional zone between normal cognition and dementia, requires a battery of formal neuropsychological tests administered by a trained rater for its diagnosis. The objective of this study was to develop a screening tool for MCI.</p> <p>Methods</p> <p>One hundred ninety seven cognitively normal controls (NC), one hundred sixteen patients with amnestic MCI –single domain (aMCI-sd), one hundred ninety five patients with amnestic MCI-multiple domain (aMCI-md), and two hundred twenty eight patients with mild Alzheimer’s disease (AD) were evaluated by comprehensive neuropsychological tests and by the Memory and Executive Screening (MES).</p> <p>Results</p> <p>Correlation analysis showed that the three indicators of the MES were significantly negatively related with age (P<0.05), yet not related with education (P>0.05). There was no ceiling or floor effect. Test completion averaged seven minutes (421.14Β±168.31 seconds). The receiver operating characteristics (ROC) analyses performed on the aMCI-sd group yielded 0.89 for the area under the curve (AUC) (95% CI, 0.85–0.92) for the MES-total score, with sensitivity of 0.795 and specificity of 0.828. There was 81% correct classification rate when the cut-off was set at less than 75. Meanwhile, the aMCI-md group yielded 0.95 for the AUC (95% CI, 0.93–0.97) for the MES-total score, with sensitivity of 0.87 and specificity of 0.91, and 90% correct classification rate when the cut-off was set at less than 72.</p> <p>Conclusion</p> <p>The MES, minimally time-consuming, may be a valid and easily administered cognitive screening tool with high sensitivity and specificity for aMCI, with single or multiple domain impairment.</p
    corecore