13 research outputs found

    Effect of chemical fertilizers and bio-fertilizers application on some morpho-physiological characteristics of forage sorghum

    Get PDF
    Abstract To evaluate effect of chemical and biological fertilizers on growth of the forage sorghum, a factorial experiment was arranged as factorial, based on randomized complete block design with three replications at the research farm of the faculty of agriculture, university of Tabriz, Iran in 2011. Treatments were chemical fertilizers levels (210 Kg/ha urea (100%), 150 Kg/ha triple superphosphate (100%), urea (100%) + triple superphosphate (S.P.T, 100%), urea 50% + S.P.T. 50% and control) and bio-fertilizers (biosuper, phosphate barvar-2, biosuper + phosphate Barvar-2 and control). Results indicated that the highest (3090.99 g.m2) and the lowest (1226/29 g.m2) forage yield and plant height were obtained from "urea (100%) + S.P.T. (100%) + phosphate Barvar-2" and "control", respectively. The highest and lowest of leaf area index (LAI) were achieved in "urea (100%) + S.P.T. (100%) + biosuper + phosphate Barvar-2" and "control "respectively. Chemical and bio-fertilizers had significant effects on Natural Detergent Fiber (NDF), as the control and treatment of "50% urea + 50% S.P.T. + phosphate Barvar-2" produced higher and lower NDF than other treatments respectively. Also the most gas production was observed in "50% urea + 50% S.P.T. + biosuper + phosphate Barvar-2". In conclusion, application of 100% chemical fertilizer with bio-fertilizers resulted the maximum of quantitative values such as forage yield, and the reduced doses of chemical fertilizer (50%) with bio-fertilizers had more positive effects on qualitative traits such as NDF

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    The Role of Artificial Intelligence, MLR and Statistical Analysis in Investigations about the Correlation of Swab Tests and Stress on Health Care Systems by COVID-19

    No full text
    The outbreak of the new Coronavirus (COVID-19) pandemic has prompted investigations on various aspects. This research aims to study the possible correlation between the numbers of swab tests and the trend of confirmed cases of infection, while paying particular attention to the sickness level. The study is carried out in relation to the Italian case, but the result is of more general importance, particularly for countries with limited ICU (intensive care units) availability. The statistical analysis showed that, by increasing the number of tests, the trend of home isolation cases was positive. However, the trend of mild cases admitted to hospitals, intensive case cases, and daily deaths were all negative. The result of the statistical analysis provided the basis for an AI study by ANN. In addition, the results were validated using a multivariate linear regression (MLR) approach. Our main result was to identify a significant statistical effect of a reduction of pressure on the health care system due to an increase in tests. The relevance of this result is not confined to the COVID-19 outbreak, because the high demand of hospitalizations and ICU treatments due to this pandemic has an indirect effect on the possibility of guaranteeing an adequate treatment for other high-fatality diseases, such as, e.g., cardiological and oncological ones. Our results show that swab testing may play a significant role in decreasing stress on the health system. Therefore, this case study is relevant, in particular, for plans to control the pandemic in countries with a limited capacity for admissions to ICU units

    Machine Learning and Geo-Based Multi-Criteria Decision Support Systems in Analysis of Complex Problems

    No full text
    Many complex problems require a multi-criteria decision, such as the COVID-19 pandemic that affected nearly all activities in the world. In this regard, this study aims to develop a multi-criteria decision support system considering the sustainability, feasibility, and success rate of possible approaches. Therefore, two models have been developed: Geo-AHP (applying geo-based data) and BN-Geo-AHP using probabilistic techniques (Bayesian network). The ranking method of Geo-APH is generalized, and the equations are provided in a way that adding new elements and variables would be possible by experts. Then, to improve the ranking, the application of the probabilistic technique of a Bayesian network and the role of machine learning for database and weight of each parameter are explained, and the model of BN-Geo-APH has been developed. In the next step, to show the application of the developed Geo-AHP and BN-Geo-AHP models, we selected the new pandemic of COVID-19 that affected nearly all activities, and we used both models for analysis. For this purpose, we first analyzed the available data about COVID-19 and previous studies about similar virus infections, and then we ranked the main approaches and alternatives in confronting the pandemic of COVID-19. The analysis of approaches with the selected alternatives shows the first ranked approach is massive vaccination and the second ranked is massive swabs or other tests. The third is the use of medical masks and gloves, and the last ranked is the lockdown, mostly due to its major negative impact on the economy and individuals

    On some properties of (k,h)-Pell sequence and (k,h)-Pell-Lucass sequence

    No full text

    Development of an Assessment Method for Investigating the Impact of Climate and Urban Parameters in Confirmed Cases of COVID-19: A New Challenge in Sustainable Development

    No full text
    Sustainable development has been a controversial global topic, and as a complex concept in recent years, it plays a key role in creating a favorable future for societies. Meanwhile, there are several problems in the process of implementing this approach, like epidemic diseases. Hence, in this study, the impact of climate and urban factors on confirmed cases of COVID-19 (a new type of coronavirus) with the trend and multivariate linear regression (MLR) has been investigated to propose a more accurate prediction model. For this propose, some important climate parameters, including daily average temperature, relative humidity, and wind speed, in addition to urban parameters such as population density, were considered, and their impacts on confirmed cases of COVID-19 were analyzed. The analysis was performed for three case studies in Italy, and the application of the proposed method has been investigated. The impacts of parameters have been considered with a delay time from one to nine days to find out the most suitable combination. The result of the analysis demonstrates the effectiveness of the proposed model and the impact of climate parameters on the trend of confirmed cases. The research hypothesis approved by the MLR model and the present assessment method could be applied by considering several variables that exhibit the exact delay of them to new confirmed cases of COVID-19

    The Effect of Timing of Decompression on Neurologic Recovery and Histopathologic Findings After Spinal Cord Compression in a Rat Model

    No full text
    Prior animal models have shown that rats sustaining 3-second immediate spinal cord compression had significantly better functional recovery and smaller lesion volumes than rats subjected to compression times of 1 hour, 6 hours, 3 weeks, and 10 weeks after spinal cord injury. We compare locomotor rating scales and spinal cord histopathology after 3 seconds and 10 minute compression times. . Ten rats were assigned into two early (3-second) and late (10-minute) compressive surgery groups. Compressive injury was produced using an aneurysmal clip method. Rats were followed-up for 11 weeks, and behavioral assessment was done by inclined plane test and tail-flick reflex. At the end of the study, the rats were sacrificed, and spinal cord specimens were studied in light and EM. Basso, Beattie and Bresnahan (BBB) locomotor rating scales were significantly better in the early compression group after the 4th week of evaluation (P<0.05) and persisted throughout the remainder of the study. Histopathology demonstrated decreased normal tissue, more severe gliosis and cystic formation in the late group compared to the early group (P<0.05). In EM study, injuries in the late group including injury to the myelin and axon were more severe than the early compression group, and there was more cytoplasmic edema in the late compression group. Spinal cord injury secondary to 3-second compression improves functional motor recovery, spares more functional tissue, and is associated with less intracellular edema, less myelin and axon damage and more myelin regeneration in rats compared to those with 10 minutes of compression. Inclined plane test and tail-flick reflex had no significant difference

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore