41 research outputs found

    Intramyocardial Transplantation of Undifferentiated Rat Induced Pluripotent Stem Cells Causes Tumorigenesis in the Heart

    Get PDF
    BACKGROUND: Induced pluripotent stem cells (iPSCs) are a novel candidate for use in cardiac stem cell therapy. However, their intrinsic tumorigenicity requires further investigation prior to use in a clinical setting. In this study we investigated whether undifferentiated iPSCs are tumorigenic after intramyocardial transplantation into immunocompetent allogeneic recipients. METHODOLOGY/PRINCIPAL FINDINGS: We transplanted 2 Ă— 10(4), 2 Ă— 10(5), or 2 Ă— 10(6) cells from the established rat iPSC line M13 intramyocardially into intact or infarcted hearts of immunocompetent allogeneic rats. Transplant duration was 2, 4, or 6 weeks. Histological examination with hematoxylin-eosin staining confirmed that undifferentiated rat iPSCs could generate heterogeneous tumors in both intracardiac and extracardiac sites. Furthermore, tumor incidence was independent of cell dose, transplant duration, and the presence or absence of myocardial infarction. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that allogeneic iPSC transplantation in the heart will likely result in in situ tumorigenesis, and that cells leaked from the beating heart are a potential source of tumor spread, underscoring the importance of evaluating the safety of future iPSC therapy for cardiac disease

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)

    Full text link

    Aging, Senescence, and Dementia

    No full text
    The underlying processes occurring in aging are complex, involving numerous biological changes that result in chronic cellular stress and sterile inflammation. One of the main hallmarks of aging is senescence. While originally the term senescence was defined in the field of oncology further research has established that also microglia, astrocytes and neurons become senescent. Since age is the main risk factor for neurodegenerative diseases, it is reasonable to argue that cellular senescence might play a major role in Alzheimer's disease. Specific cellular changes seen during Alzheimer's disease are similar to those observed during senescence across all resident brain cell types. Furthermore, increased levels of senescence-associated secretory phenotype proteins such as IL-6, IGFBP, TGF-beta and MMP-10 have been found in both CSF and plasma samples from Alzheimer's disease patients. In addition, genome-wide association studies have identified that individuals with Alzheimer's disease carry a high burden of genetic risk variants in genes known to be involved in senescence, including ADAMIO, ADAMTS4, and BIN1. Thus, cellular senescence is emerging as a potential underlying disease process operating in Alzheimer's disease. This has also attracted more attention to exploiting cellular senescence as a therapeutic target. Several senolytic compounds with the capability to eliminate senescent cells have been examined in vivo and in vitro with notable results, suggesting they may provide a novel therapeutic avenue. Here, we reviewed the current knowledge of cellular senescence and discussed the evidence of senescence in various brain cell types and its putative role in inflammaging and neurodegenerative processes

    Nationalism, Patriotism And Multinational Decision-Making Competence: Evidence From A Situation Judgment Test

    No full text
    Multiple factors may influence Warfighters’ ability to team effectively with personnel from other nations in joint military operations. The present study (N = 696) used a situation judgement test (SJT) to assess multinational decision-making competence. We hypothesized that both social identity and general decision-making competencies would be associated with SJT performance. Performance was associated with lower nationalism, and with decision-making competencies including application of decision rules and knowledge of social norms. Multivariate analyses suggested social identity and decision-making competence predicted performance independently, although nationalism and competence were negatively associated. These findings suggest that training strategies for Warfighters might identify the individual’s strengths and weaknesses, and tailor explicit instruction and virtual learning scenarios accordingly
    corecore