3 research outputs found
Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis
Osteoarthritis (OA) is the most common joint disease, affecting over 300 million people world-wide. Accumulating evidence attests to the important roles of the immune system in OA pathogenesis. Understanding the role of various immune cells in joint degeneration or joint repair after injury is vital for improving therapeutic strategies for treating OA. Post-traumatic osteoarthritis (PTOA) develops in ~50% of individuals who have experienced an articular trauma like an anterior cruciate ligament (ACL) rupture. Here, using the high resolution of single-cell RNA sequencing, we delineated the temporal dynamics of immune cell accumulation in the mouse knee joint after ACL rupture. Our study identified multiple immune cell types in the joint including neutrophils, monocytes, macrophages, B cells, T cells, NK cells and dendritic cells. Monocytes and macrophage populations showed the most dramatic changes after injury. Further characterization of monocytes and macrophages reveled 9 major subtypes with unique transcriptomics signatures, including a tissue resident Lyve1hiFolr2hi macrophage population and Trem2hiFcrls+ recruited macrophages, both showing enrichment for phagocytic genes and growth factors such as Igf1, Pdgfa and Pdgfc. We also identified several genes induced or repressed after ACL injury in a cell type-specific manner. This study provides new insight into PTOA-associated changes in the immune microenvironment and highlights macrophage subtypes that may play a role in joint repair after injury
Recommended from our members
Host tracheal and intestinal microbiomes inhibit Coccidioides growth in vitro.
UNLABELLED: Coccidioidomycosis, also known as Valley fever, is a disease caused by the fungal pathogen Coccidioides. Unfortunately, patients are often misdiagnosed with bacterial pneumonia, leading to inappropriate antibiotic treatment. The soil Bacillus subtilis-like species exhibits antagonistic properties against Coccidioides in vitro; however, the antagonistic capabilities of host microbiota against Coccidioides are unexplored. We sought to examine the potential of the tracheal and intestinal microbiomes to inhibit the growth of Coccidioides in vitro. We hypothesized that an uninterrupted lawn of microbiota obtained from antibiotic-free mice would inhibit the growth of Coccidioides, while partial in vitro depletion through antibiotic disk diffusion assays would allow a niche for fungal growth. We observed that the microbiota grown on 2×GYE (GYE) and Columbia colistin and nalidixic acid with 5% sheeps blood agar inhibited the growth of Coccidioides, but microbiota grown on chocolate agar did not. Partial depletion of the microbiota through antibiotic disk diffusion revealed diminished inhibition and comparable growth of Coccidioides to controls. To characterize the bacteria grown and identify potential candidates contributing to the inhibition of Coccidioides, 16S rRNA sequencing was performed on tracheal and intestinal agar cultures and murine lung extracts. We found that the host bacteria likely responsible for this inhibition primarily included Lactobacillus and Staphylococcus. The results of this study demonstrate the potential of the host microbiota to inhibit the growth of Coccidioides in vitro and suggest that an altered microbiome through antibiotic treatment could negatively impact effective fungal clearance and allow a niche for fungal growth in vivo. IMPORTANCE: Coccidioidomycosis is caused by a fungal pathogen that invades the host lungs, causing respiratory distress. In 2019, 20,003 cases of Valley fever were reported to the CDC. However, this number likely vastly underrepresents the true number of Valley fever cases, as many go undetected due to poor testing strategies and a lack of diagnostic models. Valley fever is also often misdiagnosed as bacterial pneumonia, resulting in 60%-80% of patients being treated with antibiotics prior to an accurate diagnosis. Misdiagnosis contributes to a growing problem of antibiotic resistance and antibiotic-induced microbiome dysbiosis; the implications for disease outcomes are currently unknown. About 5%-10% of symptomatic Valley fever patients develop chronic pulmonary disease. Valley fever causes a significant financial burden and a reduced quality of life. Little is known regarding what factors contribute to the development of chronic infections and treatments for the disease are limited
Recommended from our members
Loss of Cadherin-11 in pancreatic ductal adenocarcinoma alters tumor-immune microenvironment
Pancreatic ductal adenocarcinoma (PDAC) is one of the top five deadliest forms of cancer with very few treatment options. The 5-year survival rate for PDAC is 10% following diagnosis. Cadherin 11 (Cdh11), a cell-to-cell adhesion molecule, has been suggested to promote tumor growth and immunosuppression in PDAC, and Cdh11 inhibition significantly extended survival in mice with PDAC. However, the mechanisms by which Cdh11 deficiency influences PDAC progression and anti-tumor immune responses have yet to be fully elucidated. To investigate Cdh11-deficiency induced changes in PDAC tumor microenvironment (TME), we crossed p48-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ (KPC) mice with Cdh11+/- mice and performed single-cell RNA sequencing (scRNA-seq) of the non-immune (CD45-) and immune (CD45+) compartment of KPC tumor-bearing Cdh11 proficient (KPC-Cdh11+/+) and Cdh11 deficient (KPC-Cdh11+/-) mice. Our analysis showed that Cdh11 is expressed primarily in cancer-associated fibroblasts (CAFs) and at low levels in epithelial cells undergoing epithelial-to-mesenchymal transition (EMT). Cdh11 deficiency altered the molecular profile of CAFs, leading to a decrease in the expression of myofibroblast markers such as Acta2 and Tagln and cytokines such as Il6, Il33 and Midkine (Mdk). We also observed a significant decrease in the presence of monocytes/macrophages and neutrophils in KPC-Cdh11+/- tumors while the proportion of T cells was increased. Additionally, myeloid lineage cells from Cdh11-deficient tumors had reduced expression of immunosuppressive cytokines that have previously been shown to play a role in immune suppression. In summary, our data suggests that Cdh11 deficiency significantly alters the fibroblast and immune microenvironments and contributes to the reduction of immunosuppressive cytokines, leading to an increase in anti-tumor immunity and enhanced survival