58 research outputs found

    Fusing Continuous-valued Medical Labels using a Bayesian Model

    Full text link
    With the rapid increase in volume of time series medical data available through wearable devices, there is a need to employ automated algorithms to label data. Examples of labels include interventions, changes in activity (e.g. sleep) and changes in physiology (e.g. arrhythmias). However, automated algorithms tend to be unreliable resulting in lower quality care. Expert annotations are scarce, expensive, and prone to significant inter- and intra-observer variance. To address these problems, a Bayesian Continuous-valued Label Aggregator(BCLA) is proposed to provide a reliable estimation of label aggregation while accurately infer the precision and bias of each algorithm. The BCLA was applied to QT interval (pro-arrhythmic indicator) estimation from the electrocardiogram using labels from the 2006 PhysioNet/Computing in Cardiology Challenge database. It was compared to the mean, median, and a previously proposed Expectation Maximization (EM) label aggregation approaches. While accurately predicting each labelling algorithm's bias and precision, the root-mean-square error of the BCLA was 11.78±\pm0.63ms, significantly outperforming the best Challenge entry (15.37±\pm2.13ms) as well as the EM, mean, and median voting strategies (14.76±\pm0.52ms, 17.61±\pm0.55ms, and 14.43±\pm0.57ms respectively with p<0.0001p<0.0001)

    pyPPG: A Python toolbox for comprehensive photoplethysmography signal analysis

    Full text link
    Photoplethysmography is a non-invasive optical technique that measures changes in blood volume within tissues. It is commonly and increasingly used for in a variety of research and clinical application to assess vascular dynamics and physiological parameters. Yet, contrary to heart rate variability measures, a field which has seen the development of stable standards and advanced toolboxes and software, no such standards and open tools exist for continuous photoplethysmogram (PPG) analysis. Consequently, the primary objective of this research was to identify, standardize, implement and validate key digital PPG biomarkers. This work describes the creation of a standard Python toolbox, denoted pyPPG, for long-term continuous PPG time series analysis recorded using a standard finger-based transmission pulse oximeter. The improved PPG peak detector had an F1-score of 88.19% for the state-of-the-art benchmark when evaluated on 2,054 adult polysomnography recordings totaling over 91 million reference beats. This algorithm outperformed the open-source original Matlab implementation by ~5% when benchmarked on a subset of 100 randomly selected MESA recordings. More than 3,000 fiducial points were manually annotated by two annotators in order to validate the fiducial points detector. The detector consistently demonstrated high performance, with a mean absolute error of less than 10 ms for all fiducial points. Based on these fiducial points, pyPPG engineers a set of 74 PPG biomarkers. Studying the PPG time series variability using pyPPG can enhance our understanding of the manifestations and etiology of diseases. This toolbox can also be used for biomarker engineering in training data-driven models. pyPPG is available on physiozoo.orgComment: The manuscript was submitted to "Physiological Measurement" on September 5, 202

    Robust peak detection for photoplethysmography signal analysis

    Full text link
    Efficient and accurate evaluation of long-term photoplethysmography (PPG) recordings is essential for both clinical assessments and consumer products. In 2021, the top opensource peak detectors were benchmarked on the Multi-Ethnic Study of Atherosclerosis (MESA) database consisting of polysomnography (PSG) recordings and continuous sleep PPG data, where the Automatic Beat Detector (Aboy) had the best accuracy. This work presents Aboy++, an improved version of the original Aboy beat detector. The algorithm was evaluated on 100 adult PPG recordings from the MESA database, which contains more than 4.25 million reference beats. Aboy++ achieved an F1-score of 85.5%, compared to 80.99% for the original Aboy peak detector. On average, Aboy++ processed a 1 hour-long recording in less than 2 seconds. This is compared to 115 seconds (i.e., over 57-times longer) for the open-source implementation of the original Aboy peak detector. This study demonstrated the importance of developing robust algorithms like Aboy++ to improve PPG data analysis and clinical outcomes. Overall, Aboy++ is a reliable tool for evaluating long-term wearable PPG measurements in clinical and consumer contexts.Comment: 4 pages, 1 figure, 50th Computing in Cardiology conference in Atlanta, Georgia, USA on 1st - 4th October 202

    RawECGNet: Deep Learning Generalization for Atrial Fibrillation Detection from the Raw ECG

    Full text link
    Introduction: Deep learning models for detecting episodes of atrial fibrillation (AF) using rhythm information in long-term, ambulatory ECG recordings have shown high performance. However, the rhythm-based approach does not take advantage of the morphological information conveyed by the different ECG waveforms, particularly the f-waves. As a result, the performance of such models may be inherently limited. Methods: To address this limitation, we have developed a deep learning model, named RawECGNet, to detect episodes of AF and atrial flutter (AFl) using the raw, single-lead ECG. We compare the generalization performance of RawECGNet on two external data sets that account for distribution shifts in geography, ethnicity, and lead position. RawECGNet is further benchmarked against a state-of-the-art deep learning model, named ArNet2, which utilizes rhythm information as input. Results: Using RawECGNet, the results for the different leads in the external test sets in terms of the F1 score were 0.91--0.94 in RBDB and 0.93 in SHDB, compared to 0.89--0.91 in RBDB and 0.91 in SHDB for ArNet2. The results highlight RawECGNet as a high-performance, generalizable algorithm for detection of AF and AFl episodes, exploiting information on both rhythm and morphology

    Lirot.ai: A Novel Platform for Crowd-Sourcing Retinal Image Segmentations

    Full text link
    Introduction: For supervised deep learning (DL) tasks, researchers need a large annotated dataset. In medical data science, one of the major limitations to develop DL models is the lack of annotated examples in large quantity. This is most often due to the time and expertise required to annotate. We introduce Lirot. ai, a novel platform for facilitating and crowd-sourcing image segmentations. Methods: Lirot. ai is composed of three components; an iPadOS client application named Lirot. ai-app, a backend server named Lirot. ai-server and a python API name Lirot. ai-API. Lirot. ai-app was developed in Swift 5.6 and Lirot. ai-server is a firebase backend. Lirot. ai-API allows the management of the database. Lirot. ai-app can be installed on as many iPadOS devices as needed so that annotators may be able to perform their segmentation simultaneously and remotely. We incorporate Apple Pencil compatibility, making the segmentation faster, more accurate, and more intuitive for the expert than any other computer-based alternative. Results: We demonstrate the usage of Lirot. ai for the creation of a retinal fundus dataset with reference vasculature segmentations. Discussion and future work: We will use active learning strategies to continue enlarging our retinal fundus dataset by including a more efficient process to select the images to be annotated and distribute them to annotators

    Case Study: Fetal Breathing Movements as a Proxy for Fetal Lung Maturity Estimation

    Full text link
    Premature births can lead to complications, with fetal lung immaturity being a primary concern. Currently, fetal lung maturity (FLM) requires an invasive surfactant extraction procedure between the 32nd and 39th weeks of pregnancy. Unfortunately, there is no non-invasive method for FLM assessment. This work hypothesized that fetal breathing movement (FBM) and surfactant levels are inversely coupled and that FBM can serve as a proxy for FLM estimation. To investigate the correlation between FBM and FLM, antenatal corticosteroid (ACS) was administered to increase fetal pulmonary surfactant levels in a high-risk 35th-week pregnant woman showing intrauterine growth restriction. Synchronous sonographic and phonographic measurements were continuously recorded for 25 minutes before and after the ASC treatments. Before the ACS injection, 268 continuous movements FBM episodes were recorded. The number of continuous FBM episodes significantly decreased to 3, 43, and 79 within 24, 48, and 72 hours, respectively, of the first injection of ACS, suggesting an inversely coupled connection between FBM and surfactant level s. Therefore, FBM may serve as a proxy for FLM estimation. Quantitative confirmation of these findings would suggest that FBM measurements could be used as a non-invasive and widely accessible FLM-assessment tool for high-risk pregnancies and routine examinations.Comment: 4 pages, 3 figures, 50th Computing in Cardiology conference in Atlanta, Georgia, USA on 1st - 4th October 202

    On Merging Feature Engineering and Deep Learning for Diagnosis, Risk-Prediction and Age Estimation Based on the 12-Lead ECG

    Full text link
    Objective: Machine learning techniques have been used extensively for 12-lead electrocardiogram (ECG) analysis. For physiological time series, deep learning (DL) superiority to feature engineering (FE) approaches based on domain knowledge is still an open question. Moreover, it remains unclear whether combining DL with FE may improve performance. Methods: We considered three tasks intending to address these research gaps: cardiac arrhythmia diagnosis (multiclass-multilabel classification), atrial fibrillation risk prediction (binary classification), and age estimation (regression). We used an overall dataset of 2.3M 12-lead ECG recordings to train the following models for each task: i) a random forest taking the FE as input was trained as a classical machine learning approach; ii) an end-to-end DL model; and iii) a merged model of FE+DL. Results: FE yielded comparable results to DL while necessitating significantly less data for the two classification tasks and it was outperformed by DL for the regression task. For all tasks, merging FE with DL did not improve performance over DL alone. Conclusion: We found that for traditional 12-lead ECG based diagnosis tasks DL did not yield a meaningful improvement over FE, while it improved significantly the nontraditional regression task. We also found that combining FE with DL did not improve over DL alone which suggests that the FE were redundant with the features learned by DL. Significance: Our findings provides important recommendations on what machine learning strategy and data regime to chose with respect to the task at hand for the development of new machine learning models based on the 12-lead ECG
    corecore