4 research outputs found

    IL-15-based trifunctional antibody-fusion proteins with costimulatory TNF-superfamily ligands for cancer immunotherapy

    No full text
    IL-15 shows great potential to support an antitumor immune response and emerges as a promising agent in cancer immunotherapy. However, the systemic application of IL-15 is associated with toxicity and, as a monotherapy the efficacy of IL-15 is still limited. This study focusses on the development of novel trifunctional fusion proteins enforcing the activity of IL-15 with costimulatory ligands of the TNF superfamily and targeting the therapeutic activity to the tumor site by an antibody moiety. The homotrimeric trifunctional fusion proteins of the first generation was comprised of an antibody moiety (scFv), IL-15 fused to the extended sushi domain of the IL-15Rα chain (RD), and the extracellular domain (ECD) of 4-1BBL. Non-covalent trimerization of the ECD of 4-1BBL led to a homotrimeric fusion protein with three antibody moieties and three RD_IL-15 units. Based on the first generation trifunctional fusion protein, a novel second generation trifunctional fusion protein incorporating the ligand of the TNF superfamily in the single-chain format, i.e. genetic fusion of three extracellular domains by linkers on the same polypeptide chain, was generated, resulting in a monomeric trifunctional fusion protein with only one functional unit of each component. Similar T cell stimulation in a non-targeted setting, even improved capacity to enhance T cell stimulation when target bound and a clear antitumor effect in a mouse model in vivo was observed for the novel trifunctional fusion protein in the single-chain format. Furthermore, OX40L and GITRL were successfully incorporated into the novel trifunctional fusion protein in the single-chain format demonstrating stable protein configuration. Advantageous costimulatory properties in comparison to the combination of the respective bifunctional fusion proteins were observed for all trifunctional fusion proteins. Strongest synergistic effects were shown for RD_IL-15_scFvFAP_scGITRL in terms of enhancing the cytotoxic potential of CD8+ T cells and enhanced proliferation of CD4+ T cells. Finally, in a syngeneic lung tumor mouse model evaluating the antitumor potential of RD_IL-15_scFvFAP_scGITRL revealed a strong, targeting-dependent antitumor response. Additionally, the effect of an EGFR-directed trifunctional fusion protein on Trastuzumab-mediated ADCC was evaluated. Strong enhancement of the ADCC was achieved by the trifunctional fusion protein RD_IL-15_scFvEGFR_sc4-1BBL and the bifunctional fusion protein RD_IL-15_scFvEGFR. Thus, the trifunctional fusion protein format incorporating the ligand of the TNF superfamily in the single-chain format appears as a promising platform with versatile opportunities for further development

    Influence of antigen density and immunosuppressive factors on tumor-targeted costimulation with antibody-fusion proteins and bispecific antibody-mediated T cell response

    No full text
    Target expression heterogeneity and the presence of an immunosuppressive microenvironment can hamper severely the efficiency of immunotherapeutic approaches. We have analyzed the potential to encounter and overcome such conditions by a combinatory two-target approach involving a bispecific antibody retargeting T cells to tumor cells and tumor-directed antibody-fusion proteins with costimulatory members of the B7 and TNF superfamily. Targeting the tumor-associated antigens EpCAM and EGFR with the bispecific antibody and costimulatory fusion proteins, respectively, we analyzed the impact of target expression and the influence of the immunosuppressive factors IDO, IL-10, TGF-β, PD-1 and CTLA-4 on the targeting-mediated stimulation of T cells. Here, suboptimal activity of the bispecific antibody at diverse EpCAM expression levels could be effectively enhanced by targeting-mediated costimulation by B7.1, 4-1BBL and OX40L in a broad range of EGFR expression levels. Furthermore, the benefit of combined costimulation by B7.1/4-1BBL and 4-1BBL/OX40L was demonstrated. In addition, the expression of immunosuppressive factors was shown in all co-culture settings, where blocking of prominent factors led to synergistic effects with combined costimulation. Thus, targeting-mediated costimulation showed general promise for a broad application covering diverse target expression levels, with the option for further selective enhancement by the identification and blockade of main immunosuppressive factors of the particular tumor environment
    corecore