14 research outputs found

    Modeling speech recognition and synthesis simultaneously: Encoding and decoding lexical and sublexical semantic information into speech with no direct access to speech data

    Full text link
    Human speakers encode information into raw speech which is then decoded by the listeners. This complex relationship between encoding (production) and decoding (perception) is often modeled separately. Here, we test how encoding and decoding of lexical semantic information can emerge automatically from raw speech in unsupervised generative deep convolutional networks that combine the production and perception principles of speech. We introduce, to our knowledge, the most challenging objective in unsupervised lexical learning: a network that must learn unique representations for lexical items with no direct access to training data. We train several models (ciwGAN and fiwGAN arXiv:2006.02951) and test how the networks classify acoustic lexical items in unobserved test data. Strong evidence in favor of lexical learning and a causal relationship between latent codes and meaningful sublexical units emerge. The architecture that combines the production and perception principles is thus able to learn to decode unique information from raw acoustic data without accessing real training data directly. We propose a technique to explore lexical (holistic) and sublexical (featural) learned representations in the classifier network. The results bear implications for unsupervised speech technology, as well as for unsupervised semantic modeling as language models increasingly bypass text and operate from raw acoustics.Comment: Submitted to Interspeech 202

    Large Linguistic Models: Analyzing theoretical linguistic abilities of LLMs

    Full text link
    The performance of large language models (LLMs) has recently improved to the point where the models can perform well on many language tasks. We show here that for the first time, the models can also generate coherent and valid formal analyses of linguistic data and illustrate the vast potential of large language models for analyses of their metalinguistic abilities. LLMs are primarily trained on language data in the form of text; analyzing and evaluating their metalinguistic abilities improves our understanding of their general capabilities and sheds new light on theoretical models in linguistics. In this paper, we probe into GPT-4's metalinguistic capabilities by focusing on three subfields of formal linguistics: syntax, phonology, and semantics. We outline a research program for metalinguistic analyses of large language models, propose experimental designs, provide general guidelines, discuss limitations, and offer future directions for this line of research. This line of inquiry also exemplifies behavioral interpretability of deep learning, where models' representations are accessed by explicit prompting rather than internal representations

    AI-assisted coding: Experiments with GPT-4

    Full text link
    Artificial intelligence (AI) tools based on large language models have acheived human-level performance on some computer programming tasks. We report several experiments using GPT-4 to generate computer code. These experiments demonstrate that AI code generation using the current generation of tools, while powerful, requires substantial human validation to ensure accurate performance. We also demonstrate that GPT-4 refactoring of existing code can significantly improve that code along several established metrics for code quality, and we show that GPT-4 can generate tests with substantial coverage, but that many of the tests fail when applied to the associated code. These findings suggest that while AI coding tools are very powerful, they still require humans in the loop to ensure validity and accuracy of the results

    Articulation GAN: Unsupervised modeling of articulatory learning

    Full text link
    Generative deep neural networks are widely used for speech synthesis, but most existing models directly generate waveforms or spectral outputs. Humans, however, produce speech by controlling articulators, which results in the production of speech sounds through physical properties of sound propagation. We propose a new unsupervised generative model of speech production/synthesis that includes articulatory representations and thus more closely mimics human speech production. We introduce the Articulatory Generator to the Generative Adversarial Network paradigm. The Articulatory Generator needs to learn to generate articulatory representations (electromagnetic articulography or EMA) in a fully unsupervised manner without ever accessing EMA data. A separate pre-trained physical model (ema2wav) then transforms the generated EMA representations to speech waveforms, which get sent to the Discriminator for evaluation. Articulatory analysis of the generated EMA representations suggests that the network learns to control articulators in a manner that closely follows human articulators during speech production. Acoustic analysis of the outputs suggest that the network learns to generate words that are part of training data as well as novel innovative words that are absent from training data. Our proposed architecture thus allows modeling of articulatory learning with deep neural networks from raw audio inputs in a fully unsupervised manner. We additionally discuss implications of articulatory representations for cognitive models of human language and speech technology in general

    CiwaGAN: Articulatory information exchange

    Full text link
    Humans encode information into sounds by controlling articulators and decode information from sounds using the auditory apparatus. This paper introduces CiwaGAN, a model of human spoken language acquisition that combines unsupervised articulatory modeling with an unsupervised model of information exchange through the auditory modality. While prior research includes unsupervised articulatory modeling and information exchange separately, our model is the first to combine the two components. The paper also proposes an improved articulatory model with more interpretable internal representations. The proposed CiwaGAN model is the most realistic approximation of human spoken language acquisition using deep learning. As such, it is useful for cognitively plausible simulations of the human speech act
    corecore