32 research outputs found
Recommended from our members
A crust and upper mantle model of Eurasia and North Africa for Pn travel time calculation
We develop a Regional Seismic Travel Time (RSTT) model and methods to account for the first-order effect of the three-dimensional crust and upper mantle on travel times. The model parameterization is a global tessellation of nodes with a velocity profile at each node. Interpolation of the velocity profiles generates a 3-dimensional crust and laterally variable upper mantle velocity. The upper mantle velocity profile at each node is represented as a linear velocity gradient, which enables travel time computation in approximately 1 millisecond. This computational speed allows the model to be used in routine analyses in operational monitoring systems. We refine the model using a tomographic formulation that adjusts the average crustal velocity, mantle velocity at the Moho, and the mantle velocity gradient at each node. While the RSTT model is inherently global and our ultimate goal is to produce a model that provides accurate travel time predictions over the globe, our first RSTT tomography effort covers Eurasia and North Africa, where we have compiled a data set of approximately 600,000 Pn arrivals that provide path coverage over this vast area. Ten percent of the tomography data are randomly selected and set aside for testing purposes. Travel time residual variance for the validation data is reduced by 32%. Based on a geographically distributed set of validation events with epicenter accuracy of 5 km or better, epicenter error using 16 Pn arrivals is reduced by 46% from 17.3 km (ak135 model) to 9.3 km after tomography. Relative to the ak135 model, the median uncertainty ellipse area is reduced by 68% from 3070 km{sup 2} to 994 km{sup 2}, and the number of ellipses with area less than 1000 km{sup 2}, which is the area allowed for onsite inspection under the Comprehensive Nuclear Test Ban Treaty, is increased from 0% to 51%
Recommended from our members
Tomography and Methods of Travel-Time Calculation for Regional Seismic Location
We are developing a laterally variable velocity model of the crust and upper mantle across Eurasia and North Africa to reduce event location error by improving regional travel-time prediction accuracy. The model includes both P and S velocities and we describe methods to compute travel-times for Pn, Sn, Pg, and Lg phases. For crustal phases Pg and Lg we assume that the waves travel laterally at mid-crustal depths, with added ray segments from the event and station to the mid crustal layer. Our work on Pn and Sn travel-times extends the methods described by Zhao and Xie (1993). With consideration for a continent scale model and application to seismic location, we extend the model parameterization of Zhao and Xie (1993) by allowing the upper-mantle velocity gradient to vary laterally. This extension is needed to accommodate the large variation in gradient that is known to exist across Eurasia and North African. Further, we extend the linear travel-time calculation method to mantle-depth events, which is needed for seismic locators that test many epicenters and depths. Using these methods, regional travel times are computed on-the-fly from the velocity model in milliseconds, forming the basis of a flexible travel time facility that may be implemented in an interactive locator. We use a tomographic technique to improve upon a laterally variable starting velocity model that is based on Lawrence Livermore and Los Alamos National Laboratory model compilation efforts. Our tomographic data set consists of approximately 50 million regional arrivals from events that meet the ground truth (GT) criteria of Bondar et al. (2004) and other non-seismic constraints. Each datum is tested to meet strict quality control standards that include comparison with established distance-dependent travel-time residual populations relative to the IASPIE91 model. In addition to bulletin measurements, nearly 50 thousand arrival measurements were made at the national laboratories. The tomographic method adjusts Pn velocity, mantle gradient, and a node-specific crustal slowness correction for optimized travel-time prediction
Partial Meal Replacement Plan and Quality of the Diet at 1 Year: Action for Health in Diabetes (Look AHEAD) Trial
Little is known about diet quality with a reduced-energy, low-fat, partial meal replacement (PMR) plan, especially in individuals with type 2 diabetes. The Action for Health in Diabetes (Look AHEAD) trial implemented a PMR plan in the intensive lifestyle intervention (ILI)
Recommended from our members
UTILIZING RESULTS FROM INSAR TO DEVELOP SEISMIC LOCATION BENCHMARKS AND IMPLICATIONS FOR SEISMIC SOURCE STUDIES
Obtaining accurate seismic event locations is one of the most important goals for monitoring detonations of underground nuclear teats. This is a particular challenge at small magnitudes where the number of recording stations may be less than 20. Although many different procedures are being developed to improve seismic location, most procedures suffer from inadequate testing against accurate information about a seismic event. Events with well-defined attributes, such as latitude, longitude, depth and origin time, are commonly referred to as ground truth (GT). Ground truth comes in many forms and with many different levels of accuracy. Interferometric Synthetic Aperture Radar (InSAR) can provide independent and accurate information (ground truth) regarding ground surface deformation and/or rupture. Relating surface deformation to seismic events is trivial when events are large and create a significant surface rupture, such as for the M{sub w} = 7.5 event that occurred in the remote northern region of the Tibetan plateau in 1997. The event, which was a vertical strike slip even appeared anomalous in nature due to the lack of large aftershocks and had an associated surface rupture of over 180 km that was identified and modeled using InSAR. The east-west orientation of the fault rupture provides excellent ground truth for latitude, but is of limited use for longitude. However, a secondary rupture occurred 50 km south of the main shock rupture trace that can provide ground truth with accuracy within 5 km. The smaller, 5-km-long secondary rupture presents a challenge for relating the deformation to a seismic event. The rupture is believed to have a thrust mechanism; the dip of the fimdt allows for some separation between the secondary rupture trace and its associated event epicenter, although not as much as is currently observed from catalog locations. Few events within the time period of the InSAR analysis are candidates for the secondary rupture. Of these, we have identified six possible secondary rupture events (mb range = 3.7-4.8, with two magnitudes not reported), based on synthetic tests and residual analysis. All of the candidate events are scattered about the main and secondary rupture. A Joint Hypocenter Determination (JHD) approach applied to the aftershocks using global picks was not able to identify the secondary event. We added regional data and used propagation path corrections to reduce scatter and remove the 20-km bias seen in the main shock location. A&r preliminary analysis using several different velocity models, none of the candidate events proved to relocate on the surface trace of the secondary rupture. However, one event (mb = not reported) moved from a starting distance of {approximately}106 km to a relocated distance of {approximately}28 km from the secondary rupture, the only candidate event to relocate in relative proximity to the secondary rupture
Recommended from our members
Musical Aesthetics: An Objective Approach to "Music Appreciation" for American Public Education
The specific problem prompting this investigation is the creation of a method of music criticism. The purposes for the investigation are three in number. First and foremost, the purpose of the investigation is to develop an unrestricted method of music criticism. The development of such a method fulfills the second reason for the investigation. Although Mortimer Adler and the Paideia Group have clearly stated the classes and pedagogy to be utilized in a Paideia curriculum, they have done little to suggest specific class content. This study resolves the content problem for one class. It is recommended that the music masterworks class be treated as a course in music criticism. Through such treatment of the class, students will meet the goals of the Paideia Group and develop the tools for societal reconstruction. Finally, the goal of establishing a method of music criticism harmonious with the educational philosophy of reconstructionism is the end to the previous two "means" purposes