15 research outputs found

    Ultraslow Wave Nuclear Burning of Uranium-Plutonium Fissile Medium on Epithermal Neutrons

    Full text link
    For a fissile medium, originally consisting of uranium-238, the investigation of fulfillment of the wave burning criterion in a wide range of neutron energies is conducted for the first time, and a possibility of wave nuclear burning not only in the region of fast neutrons, but also for cold, epithermal and resonance ones is discovered for the first time. For the first time the results of the investigation of the Feoktistov criterion fulfillment for a fissile medium, originally consisting of uranium-238 dioxide with enrichments 4.38%, 2.00%, 1.00%, 0.71% and 0.50% with respect to uranium-235, in the region of neutron energies 0.015-10.0eV are presented. These results indicate a possibility of ultraslow wave neutron-nuclear burning mode realization in the uranium-plutonium media, originally (before the wave initiation by external neutron source) having enrichments with respect to uranium-235, corresponding to the subcritical state, in the regions of cold, thermal, epithermal and resonance neutrons. In order to validate the conclusions, based on the slow wave neutron-nuclear burning criterion fulfillment depending on the neutron energy, the numerical modeling of ultraslow wave neutron-nuclear burning of a natural uranium in the epithermal region of neutron energies (0.1-7.0eV) was conducted for the first time. The presented simulated results indicate the realization of the ultraslow wave neutron-nuclear burning of the natural uranium for the epithermal neutrons.Comment: 35 pages, 19 figures (v2: Fig12 and some misprints in the text are fixed

    Fukushima plutonium effect and blow-up regimes in neutron-multiplying media

    Full text link
    It is shown that the capture and fission cross-sections of 238U and 239Pu increase with temperature within 1000-3000 K range, in contrast to those of 235U, that under certain conditions may lead to the so-called blow-up modes, stimulating the anomalous neutron flux and nuclear fuel temperature growth. Some features of the blow-up regimes in neutron-multiplying media are discussed.Comment: 15 pages, 8 figures. (v2: numerous corrections and style improvements). arXiv admin note: substantial text overlap with arXiv:1207.369

    On some fundamental peculiarities of the traveling wave reactor

    Get PDF
    On the basis of the condition for nuclear burning wave existence in the neutron-multiplicating media (U-Pu and Th-U cycles) we show the possibility of surmounting the so-called dpa-parameter problem, and suggest an algorithm of the optimal nuclear burning wave mode adjustment, which is supposed to yield the wave parameters (fluence/neutron flux, width and speed of nuclear burning wave) that satisfy the dpa-condition associated with the tolerable level of the reactor materials radioactive stability, in particular that of the cladding materials. It is shown for the first time that the capture and fission cross-sections of 238^{238}U and 239^{239}Pu increase with temperature within 1000-3000K range, which under certain conditions may lead to a global loss of the nuclear burning wave stability. Some variants of the possible stability loss due to the so-called blow-up modes (anomalous nuclear fuel temperature and neutron flow evolution) are discussed and are found to possibly become a reason for a trivial violation of the traveling wave reactor internal safety.Comment: 44 pages, 19 figures, 2 table

    KamLAND-experiment and Soliton-like Nuclear Georeactor. Part 1. Comparison of Theory with Experiment

    Full text link
    We give an alternative description of the data produced in the KamLAND experiment, assuming the existence of a natural nuclear reactor on the boundary of the liquid and solid phases of the Earth's core. Analyzing the uncertainty of antineutrino spectrum of georeactor origin, we show that the theoretical (which takes into account the soliton-like nuclear georeactor) total reactor antineutrino spectra describe with good accuracy the experimental KamLAND-data over the years of 2002-2007 and 2002-2009, respectively. At the same time the parameters of mixing ({\Delta}(m21)^2=2.5\cdot 10^-5 eV^2, tan^2{\theta}12=0.437) calculated within the framework of georeactor hypothesis substantially differ from the parameters of mixing ({\Delta}(m21)^2=7.49\cdot 10^-5 eV^2, tan^2{\theta}12=0.436) obtained in KamLAND-experiment for total exposure over the period of 2002-2009. By traingulation of KamLAND and Borexino data we have constructed the coordinate location of soliton-like nuclear georeactors on the boundary of the liquid and solid phases of the Earth core. Based on the necessary condition of full synchronization of geological (magnetic) time scale and time evolution of heat power of nuclear georeactor, which plays the role of energy source of the Earth magnetic field, and also the strong negative correlation between magnetic field of the solar tachocline zone and magnetic field of the Earth liquid core (Y-component) we have obtain the estimation of nuclear georeactor average heat power ~30 TW over the years 2002-2009.Comment: 50 pages; 17 figures; 1 table. A substantially revised, corrected and enhanced editio
    corecore