108 research outputs found
Sum Rules for Radiative and Strong Decays of Heavy Mesons
We derive two model-independent sum rules relating the transition matrix
elements for radiative and strong decays of excited heavy mesons to properties
of the lowest-lying heavy mesons. The sum rule for the radiative decays is an
analog of the Cabibbo-Radicati sum rule and expresses the sum of the radiative
widths in terms of the isovector charge radius of the ground state heavy meson.
Using model-dependent estimates and heavy hadron chiral perturbation theory
calculations, we show that this sum rule is close to saturation with states of
excitation energies less than 1 GeV. An analog of the Adler-Weisberger sum rule
gives an useful sum rule for the pionic widths of heavy excited mesons, which
is used to set a model-independent upper bound on the coupling of the P-wave
heavy mesons.Comment: 12 pages, REVTe
Constraints on neutrino-photon interactions from rare Z decays
It is shown that the rare decays and are useful to put model-independent bounds on
neutrino-one-photon and neutrino-two-photon interactions. The results are then
used to constrain the neutrino magnetic moment and the double radiative
decay . It is found that the decay gives a more stringent bound on the neutrino magnetic
moment than that obtained from ; the latter
decay in turn gives limits on the neutrino-two-photon interaction that are less
stringent than those obtained for a sterile neutrino from the analysis
of conversion.Comment: 11 pages, 5 figures, elsart forma
Recommended from our members
Kinematics of femtosecond laser-generated plasma expansion: Determination of sub-micron density gradient and collisionality evolution of over-critical laser plasmas
An optical diagnostic based on resonant absorption of laser light in a plasma is introduced and is used for the determination of density scale lengths in the range of 10 nm to >1 μm at the critical surface of an overdense plasma. This diagnostic is also used to extract the plasma collisional frequency, allowing inference of the temporally evolving plasma composition on the tens of femtosecond timescale. This is found to be characterized by two eras: the early time and short scale length expansion (L  0.1λ); this is consistent with a hydrogen plasma decoupling from the bulk target material. Density gradients and plasma parameters on this scale are of importance to plasma mirror optical performance and comment is made on this theme
Naturalness and theoretical constraints on the Higgs boson mass
Arbitrary regularization dependent parameters in Quantum Field Theory are
usually fixed on symmetry or phenomenology grounds. We verify that the
quadratically divergent behavior responsible for the lack of naturalness in the
Standard Model (SM) is intrinsically arbitrary and regularization dependent.
While quadratic divergences are welcome for instance in effective models of low
energy QCD, they pose a problem in the SM treated as an effective theory in the
Higgs sector. Being the very existence of quadratic divergences a matter of
debate, a plausible scenario is to search for a symmetry requirement that could
fix the arbitrary coefficient of the leading quadratic behavior to the Higgs
boson mass to zero. We show that this is possible employing consistency of
scale symmetry breaking by quantum corrections. Besides eliminating a
fine-tuning problem and restoring validity of perturbation theory, this
requirement allows to construct bounds for the Higgs boson mass in terms of
(where is the renormalized Higgs mass and
is the 1-loop Higgs mass correction). Whereas
(perturbative regime) in this scenario allows the Higgs boson mass around the
current accepted value, the inclusion of the quadratic divergence demands
arbitrarily large to reach that experimental value.Comment: 6 pages, 4 figure
Theta angle versus CP violation in the leptonic sector
Assuming that the axion mechanism of solving the strong CP problem does not
exist and the vanishing of theta at tree level is achieved by some
model-building means, we study the naturalness of having large CP-violating
sources in the leptonic sector. We consider the radiative mechanisms which
transfer a possibly large CP-violating phase in the leptonic sector to the
theta parameter. It is found that large theta cannot be induced in the models
with one Higgs doublet as at least three loops are required in this case. In
the models with two or more Higgs doublets the dominant source of theta is the
phases in the scalar potential, induced by CP violation in leptonic sector.
Thus, in the MSSM framework the imaginary part of the trilinear soft-breaking
parameter A_l generates the corrections to the theta angle already at one loop.
These corrections are large, excluding the possibility of large phases, unless
the universality in the slepton sector is strongly violated.Comment: 5 pages, 2 figure
Neutrinoless double-beta decay and effective field theory
We analyze neutrinoless double -decay (\nbb-decay) mediated by heavy
particles from the standpoint of effective field theory. We show how symmetries
of the \nbb-decay quark operators arising in a given particle physics model
determine the form of the corresponding effective, hadronic operators. We
classify the latter according to their symmetry transformation properties as
well as the order at which they appear in a derivative expansion. We apply this
framework to several particle physics models, including R-parity violating
supersymmetry (RPV SUSY) and the left-right symmetric model (LRSM) with mixing
and a right-handed Majorana neutrino. We show that, in general, the pion
exchange contributions to \nbb-decay dominate over the short-range
four-nucleon operators. This confirms previously published RPV SUSY results and
allows us to derive new constraints on the masses in the LRSM. In particular,
we show how a non-zero mixing angle in the left-right symmetry model
produces a new potentially dominant contribution to \nbb-decay that
substantially modifies previous limits on the masses of the right-handed
neutrino and boson stemming from constraints from \nbb-decay and vacuum
stability requirements.Comment: 37 pages. Accepted for publication in PR
Kinematics of femtosecond laser-generated plasma expansion : determination of sub-micron density-gradient and collisionality evolution of over-critical laser plasmas
An optical diagnostic based on resonant absorption of laser light in a plasma is introduced and is used for the determination of density scale lengths in the range of 10 nm to >1 μm at the critical surface of an overdense plasma. This diagnostic is also used to extract the plasma collisional frequency, allowing inference of the temporally evolving plasma composition on the tens of femtosecond timescale. This is found to be characterized by two eras: the early time and short scale length expansion (L  0.1λ); this is consistent with a hydrogen plasma decoupling from the bulk target material. Density gradients and plasma parameters on this scale are of importance to plasma mirror optical performance and comment is made on this theme
Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation
Host-parasite relationships in vitamin B6 deficient cotton rats (Sigmodon hispidus) infected with Litomosoides carinii (Nematoda, filarioidea)
SIGLEAvailable from British Library Document Supply Centre- DSC:DX181371 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
- …