4 research outputs found

    Stefan blowing, navier slip and radiation effects on thermo-solutal convection from a spinning cone in an anisotropic porous medium

    Get PDF
    Thermal radiation features in many high temperature materials processing operations. To evaluate the influence of radiative flux on spin coating systems, we consider herein the thermo-solutal (coupled heat and mass transfer) in steady laminar boundary layer natural convection flow from a rotating permeable vertical cone to an anisotropic Darcian porous medium. Surface slip effects are also included in the model presented. The conservation equations are rendered into self-similar form and solved as an ordinary differential two-point boundary value problem with surface and free stream boundary conditions using MAPLE 17 software. The transport phenomena are observed to be controlled by ten parameters, viz primary and secondary Darcy numbers (Dax and Da), rotational (spin) parameter (NR), velocity slip parameter (a), suction/injection parameter (S), thermal slip parameter (b), mass slip parameter (c) buoyancy ratio parameter (N), and conduction-radiation parameter (Rc). Tangential velocity and temperature are observed to be enhanced with greater momentum slip whereas swirl velocity and concentration are reduced. Increasing swirl Darcy number strongly accelerates both the tangential and swirl flow and also heats the regime whereas it decreases concentrations. Conversely a rise in tangential Darcy number accelerates only the tangential flow and decelerates swirl flow, simultaneously depressing temperatures and concentrations. Increasing thermal slip accelerates the swirl flow and boosts concentration but serves to retard the tangential flow and decrease temperatures. With higher radiation contribution (lower Rc values) temperatures are elevated and concentrations are reduced. Verification of the MAPLE 17 solutions is achieved using a Keller-box finite difference method (KBM). A number of interesting features in the thermo-fluid and species diffusion characteristics are addressed. Key words: Stefan blowing; Spinning cone; MAPLE 17; Anisotropi

    Computational modelling of heat transfer in an annular porous medium solar energy absorber with the p1-radiative differential approximation

    Get PDF
    We study the steady, laminar thermal convection flow in a participating, absorbing-emitting fluid-saturated porous medium occupying a cylindrical annulus with significant thermal radiation effects as a simulation of a solar energy absorber system. The dimensionless incompressible, viscous conservation equations for mass, axial momentum, radial momentum, heat conservation and radiative transfer equation are presented with appropriate boundary conditions in an axisymmetric (X, R) coordinate system. The Traugott P1-Differential radiative transfer model is used which reduces the general integro-differential equation for radiation heat transfer to a partial differential equation. The Darcy-Forcheimmer isotropic porous medium drag force model is employed to simulate resistance effects of the solar porous medium with constant permeability in both the radial (R) and axial (X) direction. A numerical finite difference (FTCS) scheme is used to compute the velocity (U,V), temperature () and dimensionless zero moment of intensity (I0) distributions for the effects of conduction-radiation parameter (N), Darcy parameter (Da), Forchheimer parameter (Fs), Rayleigh buoyancy number (Ra), aspect ratio (A) and Prandtl number (Pr). The computations have shown that increasing aspect ratio increases both axial and radial velocities and elevates the radiative moment of intensity. Increasing Darcy number accelerates both axial and radial flow whereas increasing Forchheimer number decelerates the axial and radial flow. Higher values of optical thickness induce a weak deceleration in the radial flow whereas they increase both axial flow velocity and temperature. Increasing optical thickness also reduces radial radiative moment of intensity at intermediate axial coordinate values but enhances them at low and high axial coordinate values. Extensive validation is conducted with the network thermo-electric simulation program RAD-SPICE. The model finds important applications in solar energy porous wafer absorber systems, crystal growth technologies and also chemical engineering thermal technologies

    Numerical investigation of radiative optically-dense transient magnetized reactive transport phenomena with cross diffusion, dissipation and wall mass flux effects

    Get PDF
    High temperature electromagnetic materials fabrication systems in chemical engineering require ever more sophisticated theoretical and computational models for describing multiple, simultaneous thermophysical effects. Motivated by this application, the present article addresses transient magnetohydrodynamic heat and mass transfer in chemically-reacting fluid flow from an impulsively-started vertical perforated sheet. Thermal radiation flux, internal heat generation (heat source), Joule magnetic heating (Ohmic dissipation), thermo-diffusive and diffuso-thermal (i.e. cross-diffusion) effects and also viscous dissipation are incorporated in the mathematical model. To facilitate numerical solutions of the coupled, nonlinear boundary value problem, non-similar transformations are employed and the partial differential conservation equations are normalized into a dimensionless system of momentum, energy and concentration equations with associated boundary thermal conditions. An implicit finite difference method (FDM) is utilized to solve the unsteady equations. Verification of the FDM solutions for dimensionless velocity, temperature and concentration functions is achieved with a variational finite element method code (MAGNETO-FEM) and also a network simulation method code (MAG-PSPICE). The influence of the emerging thermo-physical parameters on transient velocity, temperature, concentration, wall shear stress, Nusselt number and Sherwood number is elaborated. The flow is accelerated with increasing thermal radiative flux, Eckert number, heat generation and Soret number whereas the flow is decelerated with greater wall suction, heat absorption, magnetic field and Prandtl number. Temperatures are also observed to be elevated with magnetic parameter, radiation heat transfer, Dufour number, heat generation (source) and Eckert number with the contrary effects computed for increasing suction parameter or Prandtl number. The species concentration is enhanced with Soret number and generative chemical reaction whereas it is depressed with greater wall suction, Schimidt number and destructive chemical reaction paramete

    β-Xylosidases from filamentous fungi: an overview

    No full text
    corecore