6 research outputs found

    Isolation, characterization and comparison of Atlantic and Chinook salmon growth hormone 1 and 2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growth hormone (GH) is an important regulator of skeletal growth, as well as other adapted processes in salmonids. The GH gene (<it>gh</it>) in salmonids is represented by duplicated, non-allelic isoforms designated as <it>gh1 </it>and <it>gh2</it>. We have isolated and characterized <it>gh</it>-containing bacterial artificial chromosomes (BACs) of both Atlantic and Chinook salmon (<it>Salmo salar </it>and <it>Oncorhynchus tshawytscha</it>) in order to further elucidate our understanding of the conservation and regulation of these loci.</p> <p>Results</p> <p>BACs containing <it>gh1 </it>and <it>gh2 </it>from both Atlantic and Chinook salmon were assembled, annotated, and compared to each other in their coding, intronic, regulatory, and flanking regions. These BACs also contain the genes for skeletal muscle sodium channel oriented in the same direction. The sequences of the genes for interferon alpha-1, myosin alkali light chain and microtubule associated protein Tau were also identified, and found in opposite orientations relative to <it>gh1 </it>and <it>gh2</it>. Viability of each of these genes was examined by PCR. We show that transposon insertions have occurred differently in the promoters of <it>gh</it>, within and between each species. Other differences within the promoters and intronic and 3'-flanking regions of the four <it>gh </it>genes provide evidence that they have distinct regulatory modes and possibly act to function differently and/or during different times of salmonid development.</p> <p>Conclusion</p> <p>A core proximal promoter for transcription of both <it>gh1 </it>and <it>gh2 </it>is conserved between the two species of salmon. Nevertheless, transposon integration and regulatory element differences do exist between the promoters of <it>gh1 </it>and <it>gh2</it>. Additionally, organization of transposon families into the BACs containing <it>gh1 </it>and for the BACs containing <it>gh2</it>, are very similar within orthologous regions, but much less clear conservation is apparent in comparisons between the <it>gh1</it>- and <it>gh2</it>-containing paralogous BACs for the two fish species. This is consistent with the hypothesis that a burst of transposition activity occurred during the speciation events which led to Atlantic and Pacific salmon. The Chinook and other <it>Oncorhynchus </it>GH1s are strikingly different in comparison to the other GHs and this change is not apparent in the surrounding non-coding sequences.</p

    A Salmonid EST Genomic Study: Genes, Duplications, Phylogeny and Microarrays

    Get PDF
    Background: Salmonids are of interest because of their relatively recent genome duplication, and their extensive usein wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different speciesprovide valuable genomic information for one of the most widely studied groups of fish.Results: 298,304 expressed sequence tags (ESTs) from Atlantic salmon (69% of the total), 11,664 chinook, 10,813sockeye, 10,051 brook trout, 10,975 grayling, 8,630 lake whitefish, and 3,624 northern pike ESTs were obtained in thisstudy and have been deposited into the public databases. Contigs were built and putative full-length Atlantic salmonclones have been identified. A database containing ESTs, assemblies, consensus sequences, open reading frames, genepredictions and putative annotation is available. The overall similarity between Atlantic salmon ESTs and those of rainbowtrout, chinook, sockeye, brook trout, grayling, lake whitefish, northern pike and rainbow smelt is 93.4, 94.2, 94.6, 94.4,92.5, 91.7, 89.6, and 86.2% respectively. An analysis of 78 transcript sets show Salmo as a sister group to Oncorhynchusand Salvelinus within Salmoninae, and Thymallinae as a sister group to Salmoninae and Coregoninae within Salmonidae.Extensive gene duplication is consistent with a genome duplication in the common ancestor of salmonids. Using all of theavailable EST data, a new expanded salmonid cDNA microarray of 32,000 features was created. Cross-specieshybridizations to this cDNA microarray indicate that this resource will be useful for studies of all 68 salmonid species.Conclusion: An extensive collection and analysis of salmonid RNA putative transcripts indicate that Pacific salmon,Atlantic salmon and charr are 94–96% similar while the more distant whitefish, grayling, pike and smelt are 93, 92, 89 and86% similar to salmon. The salmonid transcriptome reveals a complex history of gene duplication that is consistent withan ancestral salmonid genome duplication hypothesis. Genome resources, including a new 32 K microarray, providevaluable new tools to study salmonids

    Development and Application of a Salmonid EST Database and cDNA Microarray: Data Mining and Interspecific Hybridization Characteristics

    No full text
    We report 80,388 ESTs from 23 Atlantic salmon (Salmo salar) cDNA libraries (61,819 ESTs), 6 rainbow trout (Oncorhynchus mykiss) cDNA libraries (14,544 ESTs), 2 chinook salmon (Oncorhynchus tshawytscha) cDNA libraries (1317 ESTs), 2 sockeye salmon (Oncorhynchus nerka) cDNA libraries (1243 ESTs), and 2 lake whitefish (Coregonus clupeaformis) cDNA libraries (1465 ESTs). The majority of these are 3′ sequences, allowing discrimination between paralogs arising from a recent genome duplication in the salmonid lineage. Sequence assembly reveals 28,710 different S. salar, 8981 O. mykiss, 1085 O. tshawytscha, 520 O. nerka, and 1176 C. clupeaformis putative transcripts. We annotate the submitted portion of our EST database by molecular function. Higher- and lower-molecular-weight fractions of libraries are shown to contain distinct gene sets, and higher rates of gene discovery are associated with higher-molecular weight libraries. Pyloric caecum library group annotations indicate this organ may function in redox control and as a barrier against systemic uptake of xenobiotics. A microarray is described, containing 7356 salmonid elements representing 3557 different cDNAs. Analyses of cross-species hybridizations to this cDNA microarray indicate that this resource may be used for studies involving all salmonids
    corecore