16 research outputs found

    Generalized quasiperiodic Rauzy tilings

    Full text link
    We present a geometrical description of new canonical dd-dimensional codimension one quasiperiodic tilings based on generalized Fibonacci sequences. These tilings are made up of rhombi in 2d and rhombohedra in 3d as the usual Penrose and icosahedral tilings. Thanks to a natural indexing of the sites according to their local environment, we easily write down, for any approximant, the sites coordinates, the connectivity matrix and we compute the structure factor.Comment: 11 pages, 3 EPS figures, final version with minor change

    Invaded cluster algorithm for critical properties of periodic and aperiodic planar Ising models

    Full text link
    We demonstrate that the invaded cluster algorithm, recently introduced by Machta et al, is a fast and reliable tool for determining the critical temperature and the magnetic critical exponent of periodic and aperiodic ferromagnetic Ising models in two dimensions. The algorithm is shown to reproduce the known values of the critical temperature on various periodic and quasiperiodic graphs with an accuracy of more than three significant digits. On two quasiperiodic graphs which were not investigated in this respect before, the twelvefold symmetric square-triangle tiling and the tenfold symmetric T\"ubingen triangle tiling, we determine the critical temperature. Furthermore, a generalization of the algorithm to non-identical coupling strengths is presented and applied to a class of Ising models on the Labyrinth tiling. For generic cases in which the heuristic Harris-Luck criterion predicts deviations from the Onsager universality class, we find a magnetic critical exponent different from the Onsager value. But also notable exceptions to the criterion are found which consist not only of the exactly solvable cases, in agreement with a recent exact result, but also of the self-dual ones and maybe more.Comment: 15 pages, 5 figures; v2: Fig. 5b replaced, minor change

    Weak local rules for planar octagonal tilings

    Full text link
    We provide an effective characterization of the planar octagonal tilings which admit weak local rules. As a corollary, we show that they are all based on quadratic irrationalities, as conjectured by Thang Le in the 90s.Comment: 23 pages, 6 figure
    corecore