12 research outputs found

    Basal melt rates beneath Whillans Ice Stream, West Antarctica

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.3189/002214310793146241.Basal water lubricates and enables the fast flow of the West Antarctic ice streams which exist under low gravitational driving stress. Identification of sources and rates of basal meltwater production can provide insight into the dynamics of ice streams and the subglacial hydrology, which remain insufficiently described by glaciological theory. Combining measurements and analytic modeling, we identify two regions where basal meltwater is produced beneath Whillans Ice Stream, West Antarctica. Downstream of the onset of shear crevasses, strong basal melt (20–50 mm a−1) is concentrated beneath the relatively narrow shear margins. Farther upstream, melt rates are consistently 3–7 mm a−1 across the width of the ice stream. We show that the transition in melt-rate patterns is coincident with the onset of shear margin crevassing and streaming flow and related to the development of significant lateral shear resistance, which reorganizes the resistive stress regime and induces a concentration of basal resistance adjacent to the shear margin. Finally, we discuss how downstream freeze-on in the ice-stream center coupled with melt beneath the shear margin might result in a slowing but widening ice stream

    Reviews and syntheses: The promise of big diverse soil data, moving current practices towards future potential

    Full text link
    In the age of big data, soil data are more available and richer than ever, but – outside of a few large soil survey resources – they remain largely unusable for informing soil management and understanding Earth system processes beyond the original study. Data science has promised a fully reusable research pipeline where data from past studies are used to contextualize new findings and reanalyzed for new insight. Yet synthesis projects encounter challenges at all steps of the data reuse pipeline, including unavailable data, labor-intensive transcription of datasets, incomplete metadata, and a lack of communication between collaborators. Here, using insights from a diversity of soil, data, and climate scientists, we summarize current practices in soil data synthesis across all stages of database creation: availability, input, harmonization, curation, and publication. We then suggest new soil-focused semantic tools to improve existing data pipelines, such as ontologies, vocabulary lists, and community practices. Our goal is to provide the soil data community with an overview of current practices in soil data and where we need to go to fully leverage big data to solve soil problems in the next century

    A note on digital elevation model smoothing and driving stresses

    No full text
    Ice-flow fields, including the driving stress, provide important information on the current state and evolution of Antarctic and Greenland ice-sheet dynamics. However, computation of flow fields from continent-scale DEMs requires the use of smoothing functions and scales, the choice of which can be ad hoc. This study evaluates smoothing functions and scales for robust calculations of driving stress from Antarctic DEMs. Our approach compares a variety of filters and scales for their capacity to minimize the residual between predicted and observed flow direction fields. We find that a spatially varying triangular filter with a width of 8–10 ice thicknesses provides the closest match between the observed and predicted flow direction fields. We use the predicted flow direction fields to highlight artefacts in observed Antarctic velocities, demonstrating that comparison of multiple observational data sets has utility for quality control of continent-scale data sets

    Aerogeophysical characterization of Titan Dome, East Antarctica, and potential as an ice core target

    No full text
    Based on sparse data, Titan Dome has been identified as having a higher probability of containing ice that would capture the middle Pleistocene transition (1.25 to 0.7 Ma). New aerogeophysical observations (radar and laser altimetry) collected over Titan Dome, located about 200 km from the South Pole within the East Antarctic Ice Sheet, were used to characterize the region (e.g., geometry, internal structure, bed reflectivity, and flow history) and assess its suitability as a paleoclimate ice core site. The radar coupled with an available ice core chronology enabled the tracing of dated internal reflecting horizons throughout the region, which also served as constraints on basal ice age modeling. The results of the survey revealed new basal topographic detail and better constrain the ice topographical location of Titan Dome, which differs between community datasets. Titan Dome is not expected to be relevant to the study of the middle Pleistocene transition due to a combination of past fast flow dynamics, the basal ice likely being too young, and the temporal resolution likely being too coarse if 1 Ma ice were to exist
    corecore