3 research outputs found

    Differentiating EDRs from the Background Magnetopause Current Sheet: A Statistical Study

    Full text link
    The solar wind is a continuous outflow of charged particles from the Sun's atmosphere into the solar system. At Earth, the solar wind's outward pressure is balanced by the Earth's magnetic field in a boundary layer known as the magnetopause. Plasma density and temperature differences across the boundary layer generate the Chapman-Ferraro current which supports the magnetopause. Along the dayside magnetopause, magnetic reconnection can occur in electron diffusion regions (EDRs) embedded into the larger ion diffusion regions (IDRs). These diffusion regions form when opposing magnetic field lines in the solar wind and Earth's magnetic field merge, releasing magnetic energy into the surrounding plasma. While previous studies have given us a general understanding of the structure of the diffusion regions, we still do not have a good grasp of how they are statistically differentiated from the non-diffusion region magnetopause. By investigating 251 magnetopause crossings from NASA's Magnetospheric Multiscale (MMS) Mission, we demonstrate that EDR magnetopause crossings show current densities an order of magnitude higher than regular magnetopause crossings - crossings that either passed through the reconnection exhausts or through the non-reconnecting magnetopause, providing a baseline for the magnetopause current sheet under a wide range of driving conditions. Significant current signatures parallel to the local magnetic field in EDR crossings are also identified, which is in contrast to the dominantly perpendicular current found in the regular magnetopause. Additionally, we show that the ion velocity along the magnetopause is highly correlated with a crossing's location, indicating the presence of magnetosheath flows inside the magnetopause

    Field-Aligned Current Structures during the Terrestrial Magnetosphere's Transformation into Alfven Wings and Recovery

    Full text link
    On April 24th, 2023, a CME event caused the solar wind to become sub-Alfvenic, leading to the development of an Alfven Wing configuration in the Earth's Magnetosphere. Alfven Wings have previously been observed as cavities of low flow in Jupiter's magnetosphere, but the observing satellites did not have the ability to directly measure the Alfven Wings' current structures. Through in situ measurements made by the Magnetospheric Multiscale (MMS) spacecraft, the April 24th event provides us with the first direct measurements of current structures during an Alfven Wing configuration. We have found two distinct types of current structures associated with the Alfven Wing transformation as well as the magnetosphere recovery. These structures are observed to be significantly more anti-field-aligned and electron-driven than typical magnetopause currents, indicating the disruptions caused to the magnetosphere current system by the Alfven Wing formation
    corecore