1,541 research outputs found

    Beam-based alignment in RHIC

    Get PDF
    N/

    EMITTANCE GROWTH DUE TO BEAM-BEAM EFFECT IN RHIC.

    Get PDF
    The beam-beam interaction has a significant impact on the beam emittance growth and the luminosity lifetime in RHIC. A simulation study of the emittance growth was performed using the LIFETRAC code. The operational conditions of RHIC 2006 100GeV polarized proton run were used in the study. In this paper, the result of this study is presented and compared to the experimental measurements

    Realistic Non-Linear Model and Field Quality Analysis in Rhic Interaction Regions.

    Get PDF
    The existence of multipole components in the dipole and quadrupole magnets is one of the factors limiting the beam stability in the RHIC operations. So, a realistic non-linear model is crucial for understanding the beam behavior and to achieve the ultimate performance in RHIC. A procedure is developed to build a non-linear model using the available multipole component data obtained from measurements of RHIC magnets. We first discuss the measurements performed at different stages of manufacturing of the magnets in relation to their current state in RHIC. We then describe the procedure to implement these measurement data into tracking models, including the implementation of the multipole feed down effect due to the beam orbit offset from the magnet center. Finally, the field quality analysis in the RHIC interaction regions (IR) is presented

    Beam-beam simulation code BBSIM for particle accelerators

    Full text link
    A highly efficient, fully parallelized, six-dimensional tracking model for simulating interactions of colliding hadron beams in high energy ring colliders and simulating schemes for mitigating their effects is described. The model uses the weak-strong approximation for calculating the head-on interactions when the test beam has lower intensity than the other beam, a look-up table for the efficient calculation of long-range beam-beam forces, and a self-consistent Poisson solver when both beams have comparable intensities. A performance test of the model in a parallel environment is presented. The code is used to calculate beam emittance and beam loss in the Tevatron at Fermilab and compared with measurements. We also present results from the studies of two schemes proposed to compensate the beam-beam interactions: a) the compensation of long-range interactions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider (LHC) at CERN with a current-carrying wire, b) the use of a low energy electron beam to compensate the head-on interactions in RHIC

    Synergistic Effects of Nanosecond Pulsed Electric Fields Combined with Low Concentration of Gemcitabine on Human Oral Squamous Cell Carcinoma In Vitro

    Get PDF
    Treatment of cancer often involves uses of multiple therapeutic strategies with different mechanisms of action. In this study we investigated combinations of nanosecond pulsed electric fields (nsPEF) with low concentrations of gemcitabine on human oral cancer cells. Cells (Cal-27) were treated with pulse parameters (20 pulses, 100 ns in duration, intensities of 10, 30 and 60 kV/cm) and then cultured in medium with 0.01 mu g/ml gemcitabine. Proliferation, apoptosis/necrosis, invasion and morphology of those cells were examined using MTT, flow cytometry, clonogenics, transwell migration and TEM assay. Results show that combination treatments of gemcitabine and nsPEFs exhibited significant synergistic activities versus individual treatments for inhibiting oral cancer cell proliferation and inducing apoptosis and necrosis. However, there was no apparent synergism for cell invasion. By this we demonstrated synergistic inhibition of Cal-27 cells in vitro by nsPEFs and gemcitabine. Synergistic behavior indicates that these two treatments have different sites of action and combination treatment allows reduced doses of gemcitabine and lower nsPEF conditions, which may provide better treatment for patients than either treatment alone while reducing systemic toxicities

    Large array of sub-10 nm single-grain Au nanodots for use in nanotechnology

    Full text link
    A uniform array of single-grain Au nanodots, as small as 5-8 nm, can be formed on silicon using e-beam lithography. The as-fabricated nanodots are amorphous, and thermal annealing converts them to pure Au single crystals covered with a thin SiO2 layer. These findings are based on physical measurements, such as atomic force microscopy (AFM), atomic resolution scanning transmission electron microscopy, and chemical techniques using energy dispersive x-ray spectroscopy. A self-assembled organic monolayer is grafted on the nanodots and characterized chemically with nanometric lateral resolution. We use the extended uniform array of nanodots as a new test-bed for molecular electronics devices.Comment: In press. One file, including the manuscript and supplementary informatio
    • …
    corecore