1,711 research outputs found

    1.57 μm InGaAsP/InP surface emitting lasers by angled focus ion beam etching

    Get PDF
    The characteristics of 1.57 μm InGaAsP/InP surface emitting lasers based on an in-plan ridged structure and 45° beam deflectors defined by angled focused ion beam (FIB) etching are reported. With an externally integrated beam deflector, threshold currents and emission spectra identical to conventional edge emitting lasers are achieved. These results show that FIB etching is a very promising technique for the definition of high quality mirrors and beam deflectors on semiconductor heterostructures for a variety of integrated optoelectronic devices

    Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea

    Get PDF
    Abstract. Background. Nuclear ribosomal DNA (rDNA) genes and transcribed spacers are highly utilized as taxonomic markers in metazoans despite the lack of a cohesive understanding of their evolution. Here we follow the evolution of the rDNA second internal transcribed spacer (ITS2) and the mitochondrial DNA cytochrome oxidase I subunit in the malaria mosquito Anopheles longirostris from Papua New Guinea (PNG). This morphospecies inhabits a variety of ecological environments indicating that it may comprise a complex of morphologically indistinguishable species. Using collections from over 70 sites in PNG, the mtDNA was assessed via direct DNA sequencing while the ITS2 was assessed at three levels - crude sequence variation through restriction digest, intragenomic copy variant organisation (homogenisation) through heteroduplex analysis and DNA sequencing via cloning. Results. Genetic evaluation of over 300 individuals revealed that A. longirostris comprises eight ITS2 PCR-RFLP genotypes and nine ITS2 heteroduplex genotypes showing distinct copy variant organization profiles after PCR amplification. Seven of these nine genotypes were found to be sympatric with other genotypes. Phylogenetic analysis of cloned ITS2 PCR products and mtDNA COI confirmed all nine clades with evidence of reproductive isolation at the rDNA locus. Compensatory base changes in the ITS2 secondary structure or in pseudoknots were absent when closely related species were assessed. Individuals from each ITS2 genotype showed the same copy variant heteroduplex profile suggesting that the rDNA array is fixed within each genotype. Conclusion. The centromere-proximal position of the rDNA array in Anopheles mosquitoes has probably reduced interchromosomal recombination leaving intrachromosomal events responsible for the observed pattern of concerted evolution we see in these mosquitoes. The stability of these intragenomic ITS2 copy variants within individuals and interbreeding populations suggests that rDNA is moving as a single evolutionary unit through natural populations to fixation and has provided a complementary diagnostic tool to the restriction digest for studying genetic discontinuities and species boundaries. In this, the utility of the ITS2 as a universal taxonomic marker is probably contingent on several factors pertaining to spacer dimensions and the genomic location of the rDNA array with respect to recombination and proximity to regions potentially under selection

    Successful malaria elimination strategies require interventions that target changing vector behaviours

    Get PDF
    BACKGROUND: The ultimate long-term goal of malaria eradication was recently placed back onto the global health agenda. When planning for this goal, it is important to remember why the original Global Malaria Eradication Programme (GMEP), conducted with DDT-based indoor residual spraying (IRS), did not achieve its goals. One of the technical reasons for the failure to eliminate malaria was over reliance on a single intervention and subsequently the mosquito vectors developed behavioural resistance so that they did not come into physical contact with the insecticide.Hypothesis and how to test it: Currently, there remains a monolithic reliance on indoor vector control. It is hypothesized that an outcome of long-term, widespread control is that vector populations will change over time, either in the form of physiological resistance, changes in the relative species composition or behavioural resistance. The potential for, and consequences of, behavioural resistance was explored by reviewing the literature regarding vector behaviour in the southwest Pacific. DISCUSSION: Here, two of the primary vectors that were highly endophagic, Anopheles punctulatus and Anopheles koliensis, virtually disappeared from large areas where DDT was sprayed. However, high levels of transmission have been maintained by Anopheles farauti, which altered its behaviour to blood-feed early in the evening and outdoors and, thereby, avoiding exposure to the insecticides used in IRS. This example indicates that the efficacy of programmes relying on indoor vector control (IRS and long-lasting, insecticide-treated nets [LLINs]) will be significantly reduced if the vectors change their behaviour to avoid entering houses. CONCLUSIONS: Behavioural resistance is less frequently seen compared with physiological resistance (where the mosquito contacts the insecticide but is not killed), but is potentially more challenging to control programmes because the intervention effectiveness cannot be restored by rotating the insecticide to one with a different mode of action. The scientific community needs to urgently develop systematic methods for monitoring behavioural resistance and then to work in collaboration with vector control programmes to implement monitoring in sentinel sites. In situations where behavioural resistance is detected, there will be a need to target other bionomic vulnerabilities that may exist in the larval stages, during mating, sugar feeding or another aspect of the life cycle of the vector to continue the drive towards elimination

    Short-Term Feedback Regulation of cAMP by Accelerated Degradation in Rat Tissues

    Get PDF
    A recent study showed that cAMP analogs lowered cAMP levels in rat hepatocytes. The present work demonstrates that cAMP analogs also lowered cAMP in a rapid, concentration-dependent manner in heart and fat cells. In order to determine if the cAMP-dependent protein kinase mediated this effect, techniques were developed to assay the protein kinase activity ratio in hepatocytes treated with cAMP analogs. The activation of protein kinase and phosphorylase in hepatocytes by 8-pClΦS-cAMP (where 8-pClΦS- indicates 8-parachlorothiophenyl-) was concentration-dependent and occurred in parallel to proportionate decreases in cAMP. More than 20% of the cAMP binding sites on the protein kinase were unoccupied at concentrations of 8-pClΦS-cAMP that produced maximal cAMP lowering. Thus, the possibility that 8-pClΦS-cAMP lowered cAMP by displacing it from protein kinase binding sites, making it available for hydrolysis, seemed unlikely. In adipocytes, the lowering of cAMP by 8-pClΦS-cAMP occurred in parallel with increases in lipolysis and activation of low K(m) phosphodiesterase, suggesting that the phosphodiesterase was responsible for the cAMP lowering. Further evidence for this assertion was the finding that in hepatocytes preloaded with low concentrations of 8-pClΦS-cAMP, glucagon lowered 8-pClΦS-cAMP by about 50%, an amount similar to the cAMP lowering observed with 8-pClΦS-cAMP treatment. The results were consistent with a cAMP-dependent protein kinase-catalyzed activation of a phosphodiesterase and suggested that 8-pClΦS-cAMP-mediated hydrolysis of cAMP mimicked a physiologically significant response. The observation of this phenomenon in several tissues further suggested that it may a general mechanism for dampening and terminating the hormonal signal through accelerated degradation of cAMP

    Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus.

    Get PDF
    Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world's population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of Aedes aegypti mosquitoes from two geographically isolated populations to two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than mosquitoes from an outbreak-prone region, particularly with respect to one dengue strain. These findings suggest recent evolution of population-based differences in vector competence or different historical origins. Future genomic comparisons of these populations could reveal the genetic basis of vector competence and the relative role of selection and stochastic processes in shaping their differences. Lastly, we show the novel finding of a correlation between midgut dengue titer and titer in tissues colonized after dissemination

    Genetic diversity of the dengue vector Aedes aegypti in Australia and implications for future surveillance and mainland incursion monitoring

    Get PDF
    In February 2004, the discovery of an incursion of the dengue vector Aedes aegypti into the town of Tennant Creek in the Northern Territory caused concern for the Northern Territory health authorities who proceeded to implement a Commonwealth-funded eradication program. To determine the origin of the incursion, we performed a genetic analysis on Ae. aegypti from several Queensland and overseas localities. A comparison of DNA sequences from the mitochondrial cytochrome oxidase 1 gene indicated that the incursion was probably from Cairns or Camooweal. This genetic marker was also useful in identifying a separate Townsville haplotype population and another population on Thursday Island in the Torres Strait that is genetically distant to the mainland populations. The possible use of this marker as a surveillance tool for identifying the origins of local and overseas incursions is discussed

    Folding of a donor–acceptor polyrotaxane by using noncovalent bonding interactions

    Get PDF
    Mechanically interlocked compounds, such as bistable catenanes and bistable rotaxanes, have been used to bring about actuation in nanoelectromechanical systems (NEMS) and molecular electronic devices (MEDs). The elaboration of the structural features of such rotaxanes into macromolecular materials might allow the utilization of molecular motion to impact their bulk properties. We report here the synthesis and characterization of polymers that contain π electron-donating 1,5-dioxynaphthalene (DNP) units encircled by cyclobis(paraquat-p-phenylene) (CBPQT4+), a π electron-accepting tetracationic cyclophane, synthesized by using the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The polyrotaxanes adopt a well defined “folded” secondary structure by virtue of the judicious design of two DNP-containing monomers with different binding affinities for CBPQT4+. This efficient approach to the preparation of polyrotaxanes, taken alongside the initial investigations of their chemical properties, sets the stage for the preparation of a previously undescribed class of macromolecular architectures

    Characterization of Poly(isobornyl acrylate) as a Construction Material for Microfluidic Applications

    Get PDF
    ABSTRACT: Isobornyl acrylate (IBA) is a photopolymerizable monomer that is employed in microfluidic devices because of desirable properties, such as inertness, transparency, and resolution. However, some of the mechanical properties of poly(isobornyl acrylate) are greatly affected by subtle changes in the manufacturing techniques. In this study, the parameters of exposure time, UV intensity, and aging are varied to study their effect on the material properties of thin samples of isobornyl acrylate construction material (<0.25 mm). Mechanical testing was used to obtain properties, such as elasticity, maximum strength, and maximum strain. It was observed that when using high levels of both exposure time and intensity, the polymers strength was increased. Lowering one of these two parameters immediately reduced the construction materials strength. It was also noted that aging weakens the material in as little as 1 day. In addition, an anisotropic response that produces curling in samples has been studied. It showed to have a negligible effect on the mechanical properties of the material; however it may have a major effect on device quality and shelf-life

    Gene flow between island populations of the malaria mosquito, Anopheles hinesorum, may have contributed to the spread of divergent host preference phenotypes

    Get PDF
    Anopheles hinesorum is a mosquito species with variable host preference. Throughout New Guinea and northern Australia, An. hinesorum feeds on humans (it is opportunistically anthropophagic) while in the south-west Pacific's Solomon Archipelago, the species is abundant but has rarely been found biting humans (it is exclusively zoophagic in most populations). There are at least two divergent zoophagic (nonhuman biting) mitochondrial lineages of An. hinesorum in the Solomon Archipelago representing two independent dispersals. Since zoophagy is a derived (nonancestral) trait in this species, this leads to the question: has zoophagy evolved independently in these two populations? Or conversely: has nuclear gene flow or connectivity resulted in the transfer of zoophagy? Although we cannot conclusively answer this, we find close nuclear relationships between Solomon Archipelago populations indicating that recent nuclear gene flow has occurred between zoophagic populations from the divergent mitochondrial lineages. Recent work on isolated islands of the Western Province (Solomon Archipelago) has also revealed an anomalous, anthropophagic island population of An. hinesorum. We find a common shared mitochondrial haplotype between this Solomon Island population and another anthropophagic population from New Guinea. This finding suggests that there has been recent migration from New Guinea into the only known anthropophagic population from the Solomon Islands. Although currently localized to a few islands in the Western Province of the Solomon Archipelago, if anthropophagy presents a selective advantage, we may see An. hinesorum emerge as a new malaria vector in a region that is now working on malaria elimination
    corecore