28 research outputs found

    Automating Intended Target Identification for Paraphasias in Discourse using a large language model

    Get PDF
    Purpose: To date, there are no automated tools for the identification and fine-grained classification of paraphasias within discourse, the production of which is the hallmark characteristic of most people with aphasia (PWA). In this work, we fine-tune a large language model (LLM) to automatically predict paraphasia targets in Cinderella story retellings. Method: Data consisted of 332 Cinderella story retellings containing 2,489 paraphasias from PWA, for which research assistants identified their intended targets. We supplemented these training data with 256 sessions from control participants, to which we added 2,415 synthetic paraphasias. We conducted four experiments using different training data configurations to fine-tune the LLM to automatically “fill in the blank” of the paraphasia with a predicted target, given the context of the rest of the story retelling. We tested the experiments\u27 predictions against our human-identified targets and stratified our results by ambiguity of the targets and clinical factors. Results: The model trained on controls and PWA achieved 50.7% accuracy at exactly matching the human-identified target. Fine-tuning on PWA data, with or without controls, led to comparable performance. The model performed better on targets with less human ambiguity and on paraphasias from participants with fluent or less severe aphasia. Conclusions: We were able to automatically identify the intended target of paraphasias in discourse using just the surrounding language about half of the time. These findings take us a step closer to automatic aphasic discourse analysis. In future work, we will incorporate phonological information from the paraphasia to further improve predictive utility

    Lung Toxicity of Ambient Particulate Matter from Southeastern U.S. Sites with Different Contributing Sources: Relationships between Composition and Effects

    Get PDF
    BACKGROUND: Exposure to air pollution and, more specifically, particulate matter (PM) is associated with adverse health effects. However, the specific PM characteristics responsible for biological effects have not been defined. OBJECTIVES: In this project we examined the composition, sources, and relative toxicity of samples of PM with aerodynamic diameter ≥2.5 μm (PM(2.5)) collected from sites within the Southeastern Aerosol Research and Characterization (SEARCH) air monitoring network during two seasons. These sites represent four areas with differing sources of PM(2.5), including local urban versus regional sources, urban areas with different contributions of transportation and industrial sources, and a site influenced by Gulf of Mexico weather patterns. METHODS: We collected samples from each site during the winter and summer of 2004 for toxicity testing and for chemical analysis and chemical mass balance–based source apportionment. We also collected PM(2.5) downwind of a series of prescribed forest burns. We assessed the toxicity of the samples by instillation into rat lungs and assessed general toxicity, acute cytotoxicity, and inflammation. Statistical dose–response modeling techniques were used to rank the relative toxicity and compare the seasonal differences at each site. Projection-to-latent-surfaces (PLS) techniques examined the relationships among sources, chemical composition, and toxicologic end points. RESULTS AND CONCLUSIONS: Urban sites with high contributions from vehicles and industry were most toxic
    corecore