2 research outputs found
Glycosaminoglycans: What Remains To Be Deciphered?
Glycosaminoglycans (GAGs) are complex polysaccharides exhibiting a vast structural diversity and fulfilling various functions mediated by thousands of interactions in the extracellular matrix, at the cell surface, and within the cells where they have been detected in the nucleus. It is known that the chemical groups attached to GAGs and GAG conformations comprise “glycocodes” that are not yet fully deciphered. The molecular context also matters for GAG structures and functions, and the influence of the structure and functions of the proteoglycan core proteins on sulfated GAGs and vice versa warrants further investigation. The lack of dedicated bioinformatic tools for mining GAG data sets contributes to a partial characterization of the structural and functional landscape and interactions of GAGs. These pending issues will benefit from the development of new approaches reviewed here, namely (i) the synthesis of GAG oligosaccharides to build large and diverse GAG libraries, (ii) GAG analysis and sequencing by mass spectrometry (e.g., ion mobility-mass spectrometry), gas-phase infrared spectroscopy, recognition tunnelling nanopores, and molecular modeling to identify bioactive GAG sequences, biophysical methods to investigate binding interfaces, and to expand our knowledge and understanding of glycocodes governing GAG molecular recognition, and (iii) artificial intelligence for in-depth investigation of GAGomic data sets and their integration with proteomics
Performance evaluation of the high sensitive troponin I assay on the Atellica IM analyser
The Fourth Universal Definition of Myocardial Infarction Global Taskforce recommends the use of high sensitive troponin (hs-Tn) assays in the diagnosis of acute myocardial infarction. We evaluated the analytical performance of the Atellica IM High-sensitivity Troponin I Assay (hs-TnI) (Siemens Healthcare Diagnostics Inc., Tarrytown, USA) and compared its performance to other hs-TnI assays (Siemens Advia Centaur, Dimension Vista, Dimension EXL, and Abbott Architect (Wiesbaden, Germany)) at one or more sites across Europe.
Precision, detection limit, linearity, method comparison, and interference studies were performed according to Clinical and Laboratory Standards Institute protocols. Values in 40 healthy individuals were compared to the manufacturer’s cut-offs. Sample turnaround time (TAT) was examined.
Imprecision repeatability CVs were 1.1–4.7% and within-lab imprecision were 1.8–7.6% (10.0–25,000 ng/L). The limit of blank (LoB), detection (LoD), and quantitation (LoQ) aligned with the manufacturer’s values of 0.5 ng/L, 1.6 ng/L, and 2.5 ng/L, respectively. Passing-Bablok regression demonstrated good correlations between Atellica IM analyser with other systems; some minor deviations were observed. All results in healthy volunteers fell below the 99th percentile URL, and greater than 50% of each sex demonstrated values above the LoD. No interference was observed for biotin (≤ 1500 µg/L), but a slight bias at 5.0 g/L haemoglobin and 50 ng/L Tn was observed. TAT from was fast (mean time = 10.9 minutes) and reproducible (6%CV).
Real-world analytical and TAT performance of the hs-TnI assay on the Atellica IM analyser make this assay fit for routine use in clinical laboratories