39 research outputs found
Recommended from our members
Effects of buoyancy on premixed flame stabilization
The stabilization limits of v-flame and conical flames are investigated in normal gravity (+g) and reversed gravity (up-side-down burner, -g) to compare with observations of flame stabilization during microgravity experiments. The results show that buoyancy has most influence on the stabilization of laminar V-flames. Under turbulent conditions, the effects are less significant. For conical flames stabilized with a ring, the stabilization domain of the +g and -g cases are not significantly different. Under reversed gravity, both laminar v-flames and conical flames show flame behaviors that were also found in microgravity. The v-flames reattached to the rim and the conical flame assumed a top-hat shape. One of the special cases of -g conical flame is the buoyancy stabilized laminar flat flame that is detached from the burner. These flame implies a balance between the flow momentum and buoyant forces. The stretch rates of these flames are sufficiently low (< 20 s{sup -1}) such that the displacement speeds S{sub L} are almost equal to the laminar burning speed S{sub L}{sup 0}. An analysis based on evaluating the Richardson number is used to determine the relevant parameters that describe the buoyancy/momentum balance. A perfect balance i.e. Ri = l can be attained when the effect of heat loss from the flame zone is low. For the weaker lean cases, our assumption of adiabaticity tends to overestimate the real flame temperature. This interesting low stretch laminar flame configuration can be useful for fundamental studies of combustion chemistry
Recommended from our members
Effects of buoyancy on lean premixed v-flames, Part II. VelocityStatistics in Normal and Microgravity
The field effects of buoyancy on laminar and turbulent premixed v-flames have been studied by the use of laser Doppler velocimetry to measure the velocity statistics in +1g, -1g and {micro}g flames. The experimental conditions covered mean velocity, Uo, of 0.4 to 2 m/s, methane/air equivalence ratio, f, of 0.62 to 0.75. The Reynolds numbers, from 625 to 3130 and the Richardson number from 0.05 to 1.34. The results show that a change from favorable (+1g) to unfavorable (-1g) mean pressure gradient in the plume create stagnating flows in the far field whose influences on the mean and fluctuating velocities persist in the near field even at the highest Re we have investigated. The use of Richardson number < 0.1 as a criterion for momentum dominance is not sufficient to prescribe an upper limit for these buoyancy effects. In {micro}g, the flows within the plumes are non-accelerating and parallel. Therefore, velocity gradients and hence mean strain rates in the plumes of laboratory flames are direct consequences of buoyancy. Furthermore, the rms fluctuations in the plumes of {micro}g flames are lower and more isotropic than in the laboratory flames to show that the unstable plumes in laboratory flames also induce velocity fluctuations. The phenomena influenced by buoyancy i.e. degree of flame wrinkling, flow acceleration, flow distribution, and turbulence production, can be subtle due to their close coupling with other flame flow interaction processes. But they cannot be ignored in fundamental studies or else the conclusions and insights would be ambiguous and not very meaningful
Recommended from our members
PLIF Investigation of the Evolution of Premixed Turbulent Flame Structures
Recommended from our members
Effects of buoyancy on lean premixed v-flames, Part II. Velocity Statistics in Normal and Microgravity
Recommended from our members
Characterization of Acoustic Effects on Flame Structures by Beam Deflection Technique
This work shows that the acoustic effects are the causes of the small amplitude flame wrinkling and movements seen in all the different gravitational conditions. The comparison between the acoustic velocity and beam deflection spectra for the two conditions studied (glass beads and fiber glass) demonstrates clearly this flame/acoustic coupling. This acoustic study shows that the burner behaves like a Helmholtz resonator. The estimated resonance frequency corresponds well to the experimental measurements. The fiber glass damps the level of the resonance frequency and the flame motion. The changes shown in normalized beam deflection spectra give further support of this damping. This work demonstrates that the acoustics has a direct influence on flame structure in the laminar case and the preliminary results in turbulent case also show a strong coupling. The nature of this flame/acoustic coupling are still not well understood. Further investigation should include determining the frequency limits and the sensitivity of the flame to acoustic perturbations
Premios y descuentos en el mercado de haciendas.
Diariamente se divulga información de precios de distintas categorÃas de ganado bovino y ovino a través de diversos medios de prensa. Ya sea que los datos provengan de un remate - tradicional o por pantalla - o de resúmenes de estadÃsticas semanales o perÃodos mayores, lo que se publican son promedios y, en todo caso, rangos de precios (mÃnimo y máximo). Existe una variabilidad, a veces muy marcada, en los valores de los ganados comercializados, no sólo en fechas diferentes sino dentro de un mismo local de remate en un dÃa en particular
Recommended from our members
Effects of buoyancy on the flowfields of lean premixed turbulent v-flames
Open laboratory turbulent flames used for investigating fundament flame turbulence interactions are greatly affected by buoyancy. Though much of our current knowledge is based on observations made in these open flames, the effects of buoyancy are usually not included in data interpretation, numerical analysis or theories. This inconsistency remains an obstacle to merging experimental observations and theoretical predictions. To better understanding the effects of buoyancy, our research focuses on steady lean premixed flames propagating in fully developed turbulence. We hypothesize that the most significant role of buoyancy forces on these flames is to influence their flowfields through a coupling with mean and fluctuating pressure fields. Changes in flow pattern alter the mean aerodynamic stretch and in turn affect turbulence fluctuation intensities both upstream and downstream of the flame zone. Consequently, flame stabilization, reaction rates, and turbulent flame processes are all affected. This coupling relates to the elliptical problem that emphasizes the importance of the upstream, wall and downstream boundary conditions in determining all aspects of flame propagation. Therefore, buoyancy has the same significance as other parameters such as flow configuration, flame geometry, means of flame stabilization, flame shape, enclosure size, mixture conditions, and flow conditions