3,990 research outputs found
Active primate simulator Final report
Systems engineering data and design specifications for Biosatellite active primate simulato
Inequalities that test locality in quantum mechanics
Quantum theory violates Bell's inequality, but not to the maximum extent that
is logically possible. We derive inequalities (generalizations of Cirel'son's
inequality) that quantify the upper bound of the violation, both for the
standard formalism and the formalism of generalized observables (POVMs). These
inequalities are quantum analogues of Bell inequalities, and they can be used
to test the quantum version of locality. We discuss the nature of this kind of
locality. We also go into the relation of our results to an argument by Popescu
and Rohrlich (Found. Phys. 24, 379 (1994)) that there is no general connection
between the existence of Cirel'son's bound and locality.Comment: 5 pages, 1 figure; the argument has been made clearer in the revised
version; 1 reference adde
Semicausal operations are semilocalizable
We prove a conjecture by DiVincenzo, which in the terminology of Preskill et
al. [quant-ph/0102043] states that ``semicausal operations are
semilocalizable''. That is, we show that any operation on the combined system
of Alice and Bob, which does not allow Bob to send messages to Alice, can be
represented as an operation by Alice, transmitting a quantum particle to Bob,
and a local operation by Bob. The proof is based on the uniqueness of the
Stinespring representation for a completely positive map. We sketch some of the
problems in transferring these concepts to the context of relativistic quantum
field theory.Comment: 4 pages, 1 figure, revte
The structure, energy, and electronic states of vacancies in Ge nanocrystals
The atomic structure, energy of formation, and electronic states of vacancies
in H-passivated Ge nanocrystals are studied by density functional theory (DFT)
methods. The competition between quantum self-purification and the free surface
relaxations is investigated. The free surfaces of crystals smaller than 2 nm
distort the Jahn-Teller relaxation and enhance the reconstruction bonds. This
increases the energy splitting of the quantum states and reduces the energy of
formation to as low as 1 eV per defect in the smallest nanocrystals. In
crystals larger than 2 nm the observed symmetry of the Jahn-Teller distortion
matches the symmetry expected for bulk Ge crystals. Near the nanocrystal's
surface the vacancy is found to have an energy of formation no larger than 0.5
to 1.4 eV per defect, but a vacancy more than 0.7 nm inside the surface has an
energy of formation that is the same as in bulk Ge. No evidence of the
self-purification effect is observed; the dominant effect is the free surface
relaxations, which allow for the enhanced reconstruction. From the evidence in
this paper, it is predicted that for moderate sized Ge nanocrystals a vacancy
inside the crystal will behave bulk-like and not interact strongly with the
surface, except when it is within 0.7 nm of the surface.Comment: In Press at Phys. Rev.
Efficient Scheme for Initializing a Quantum Register with an Arbitrary Superposed State
Preparation of a quantum register is an important step in quantum computation
and quantum information processing. It is straightforward to build a simple
quantum state such as |i_1 i_2 ... i_n\ket with being either 0 or 1,
but is a non-trivial task to construct an {\it arbitrary} superposed quantum
state. In this Paper, we present a scheme that can most generally initialize a
quantum register with an arbitrary superposition of basis states.
Implementation of this scheme requires standard 1- and 2-bit gate
operations, {\it without introducing additional quantum bits}. Application of
the scheme in some special cases is discussed.Comment: 4 pages, 4 figures, accepted by Phys. Rev.
Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions
The traffic-like collective movement of ants on a trail can be described by a
stochastic cellular automaton model. We have earlier investigated its unusual
flow-density relation by using various mean field approximations and computer
simulations. In this paper, we study the model following an alternative
approach based on the analogy with the zero range process, which is one of the
few known exactly solvable stochastic dynamical models. We show that our theory
can quantitatively account for the unusual non-monotonic dependence of the
average speed of the ants on their density for finite lattices with periodic
boundary conditions. Moreover, we argue that the model exhibits a continuous
phase transition at the critial density only in a limiting case. Furthermore,
we investigate the phase diagram of the model by replacing the periodic
boundary conditions by open boundary conditions.Comment: 8 pages, 6 figure
SAGA: A project to automate the management of software production systems
The project to automate the management of software production systems is described. The SAGA system is a software environment that is designed to support most of the software development activities that occur in a software lifecycle. The system can be configured to support specific software development applications using given programming languages, tools, and methodologies. Meta-tools are provided to ease configuration. Several major components of the SAGA system are completed to prototype form. The construction methods are described
- …