2,478 research outputs found
Entangling quantum measurement and its properties
We study the mathematical structure of superoperators describing quantum
measurements, including the \emph{entangling measurement}--the generalization
of the standard quantum measurement that results in entanglement between the
measurable system and apparatus. It is shown that the coherent information can
be effectively used for the analysis of such entangling measurements whose
possible applications are discussed as well.Comment: 8 pages, 1 figure; accepted for publication in Phys. Rev.
When Is a Bulge Not a Bulge? Inner Disks Masquerading as Bulges in NGC 2787 and NGC 3945
We present a detailed morphological, photometric, and kinematic analysis of
two barred S0 galaxies with large, luminous inner disks inside their bars. We
show that these structures, in addition to being geometrically disk-like, have
exponential profiles (scale lengths 300--500 pc) distinct from the
central, non-exponential bulges. We also find them to be kinematically
disk-like. The inner disk in NGC 2787 has a luminosity roughly twice that of
the bulge; but in NGC 3945, the inner disk is almost ten times more luminous
than the bulge, which itself is extremely small (half-light radius
100 pc, in a galaxy with an outer ring of radius 14 kpc) and only
5% of the total luminosity -- a bulge/total ratio much more typical of
an Sc galaxy. We estimate that at least 20% of (barred) S0 galaxies may have
similar structures, which means that their bulge/disk ratios may be
significantly overestimated. These inner disks dominate the central light of
their galaxies; they are at least an order of magnitude larger than typical
``nuclear disks'' found in ellipticals and early-type spirals. Consequently,
they must affect the dynamics of the bars in which they reside.Comment: LaTeX, 37 pages, 14 EPS figures. To appear in The Astrophysical
Journal (November 10, 2003 issue). Version with full-resolution figures
available at http://www.iac.es/galeria/erwin/research
Spiral inflow feeding the nuclear starburst in M83, observed in H-alpha emission with the GHAFAS Fabry-Perot interferometer
We present observations of the nearby barred starburst galaxy, M83 (NGC5236),
with the new Fabry-Perot interferometer GHAFAS mounted on the 4.2 meter William
Herschel Telescope on La Palma. The unprecedented high resolution observations,
of 16 pc/FWHM, of the H-alpha-emitting gas cover the central two kpc of the
galaxy. The velocity field displays the dominant disk rotation with signatures
of gas inflow from kpc scales down to the nuclear regions. At the inner Inner
Lindblad Resonance radius of the main bar and centerd at the dynamical center
of the main galaxy disk, a nuclear rapidly
rotating disk with scale length of pc has formed. The nuclear
starburst is found in the vicinity as well as inside this nuclear disk, and our
observations confirm that gas spirals in from the outer parts to feed the
nuclear starburst, giving rise to several star formation events at different
epochs, within the central 100 pc radius of M83.Comment: Accepted for publication in ApJ Letters. High-resolution version can
be found at http://www.astro.su.se/~kambiz/DOC/paper-M83.pd
Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions
The traffic-like collective movement of ants on a trail can be described by a
stochastic cellular automaton model. We have earlier investigated its unusual
flow-density relation by using various mean field approximations and computer
simulations. In this paper, we study the model following an alternative
approach based on the analogy with the zero range process, which is one of the
few known exactly solvable stochastic dynamical models. We show that our theory
can quantitatively account for the unusual non-monotonic dependence of the
average speed of the ants on their density for finite lattices with periodic
boundary conditions. Moreover, we argue that the model exhibits a continuous
phase transition at the critial density only in a limiting case. Furthermore,
we investigate the phase diagram of the model by replacing the periodic
boundary conditions by open boundary conditions.Comment: 8 pages, 6 figure
Simulation of Many-Body Fermi Systems on a Universal Quantum Computer
We provide fast algorithms for simulating many body Fermi systems on a
universal quantum computer. Both first and second quantized descriptions are
considered, and the relative computational complexities are determined in each
case. In order to accommodate fermions using a first quantized Hamiltonian, an
efficient quantum algorithm for anti-symmetrization is given. Finally, a
simulation of the Hubbard model is discussed in detail.Comment: Submitted 11/7/96 to Phys. Rev. Lett. 10 pages, 0 figure
Cadmium-induced oxidative cellular damage in human fetal lung fibroblasts (MRC-5 cells).
Epidemiological evidence suggests that cadmium (Cd) exposure causes pulmonary damage such as emphysema and lung cancer. However, relatively little is known about the mechanisms involved in Cd pulmonary toxicity. In the present study, the effects of Cd exposure on human fetal lung fibroblasts (MRC-5 cells) were evaluated by determination of lipid peroxidation, intra-cellular production of reactive oxygen species (ROS), and changes of mitochondrial membrane potential. A time- and dose-dependent increase of both lactate dehydrogenase leakage and malondialdehyde formation was observed in Cd-treated cells. A close correlation between these two events suggests that lipid peroxidation may be one of the main pathways causing its cytotoxicity. It was also noted that Cd-induced cell injury and lipid peroxidation were inhibited by catalase and superoxide dismutase, two antioxidant enzymes. By using the fluorescent probe 2',7'-dichlorofluorescin diacetate, a significant increase of ROS production in Cd-treated MRC-5 cells was detected. The inhibition of dichlorofluorescein fluorescence by catalase, not superoxide dismutase, suggests that hydrogen peroxide is the main ROS involved. Moreover, the significant dose-dependent changes of mitochondrial membrane potential in Cd-treated MRC-5 cells, demonstrated by increased fluorescence of rhodamine 123 examined using a laser-scanning confocal microscope, also indicate the involvement of mitochondrial damage in Cd cytotoxicity. These findings provide in vitro evidence that Cd causes oxidative cellular damage in human fetal lung fibroblasts, which may be closely associated with the pulmonary toxicity of Cd
Ultraviolet Signposts of Resonant Dynamics in the Starburst-Ringed Sab Galaxy, M94 (NGC 4736)
M94 (NGC 4736) is investigated using images from the Ultraviolet Imaging
Telescope (FUV-band), Hubble Space Telescope (NUV-band), Kitt Peak 0.9-m
telescope (H-alpha, R, and I bands), and Palomar 5-m telescope (B-band), along
with spectra from the International Ultraviolet Explorer and Lick 1-m
telescopes. The wide-field UIT image shows FUV emission from (a) an elongated
nucleus, (b) a diffuse inner disk, where H-alpha is observed in absorption, (c)
a bright inner ring of H II regions at the perimeter of the inner disk (R = 48
arcsec. = 1.1 kpc), and (d) two 500-pc size knots of hot stars exterior to the
ring on diametrically opposite sides of the nucleus (R= 130 arcsec. = 2.9 kpc).
The HST/FOC image resolves the NUV emission from the nuclear region into a
bright core and a faint 20 arcsec. long ``mini-bar'' at a position angle of 30
deg. Optical and IUE spectroscopy of the nucleus and diffuse inner disk
indicates an approximately 10^7 or 10^8 yr-old stellar population from
low-level starbirth activity blended with some LINER activity. Analysis of the
H-alpha, FUV, NUV, B, R, and I-band emission along with other observed tracers
of stars and gas in M94 indicates that most of the star formation is being
orchestrated via ring-bar dynamics involving the nuclear mini-bar, inner ring,
oval disk, and outer ring. The inner starburst ring and bi-symmetric knots at
intermediate radius, in particular, argue for bar-mediated resonances as the
primary drivers of evolution in M94 at the present epoch. Similar processes may
be governing the evolution of the ``core-dominated'' galaxies that have been
observed at high redshift. The gravitationally-lensed ``Pretzel Galaxy''
(0024+1654) at a redshift of approximately 1.5 provides an important precedent
in this regard.Comment: revised figure 1 (corrected coordinate labels on declination axis);
19 pages of text + 19 figures (jpg files); accepted for publication in A
A new chemo-evolutionary population synthesis model for early-type galaxies. II: Observations and Results
We present here the results of applying a new chemo-evolutionary stellar
population model developed by ourselves in a previous paper (Vazdekis et al.
1996) to new high quality observational data of the nuclear regions of two
representative elliptical galaxies and the bulge of the Sombrero galaxy. Here
we fit in detail about 20 absorption lines and 6 optical and near-infrared
colors following two approaches: fitting a single-age single-metallicity model
and fitting our full chemical evolutionary model. We find that all of the iron
lines are weaker than the best fitting models predict, indicating that the
iron-abundance is anomalous and deficient. We also find that the Ca_I index at
4227 A is much lower than predicted by the models. We can obtain good fits for
all the other lines and observed colors with models of old and metal-rich
stellar populations, and can show that the observed radial gradients are due to
metallicity decreasing outward. We find that good fits are obtained both with
fully evolutionary models and with single-age single-metallicity models. This
is due to the fact that in the evolutionary model more than 80% of stars form
with in 1.5 Gyr after the formation of the galaxies. The fact that slightly
better fits are obtained with evolutionary models indicates these galaxies
contain a small spread in metallicity.Comment: 29 pages, Latex with 22 figures and 2 landscape tables in ps-format.
Paper to be published in the Ap. J. Suppl., June 199
Measurement of the cosmic microwave background polarization lensing power spectrum from two years of POLARBEAR data
We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of AL = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first- year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination
- …