4,087 research outputs found

    Generation of galactic disc warps due to intergalactic accretion flows onto the disc

    Get PDF
    A new method is developed to calculate the amplitude of the galactic warps generated by a torque due to external forces. This takes into account that the warp is produced as a reorientation of the different rings which constitute the disc in order to compensate the differential precession generated by the external force, yielding a uniform asymptotic precession for all rings. Application of this method to gravitational tidal forces in the Milky Way due to the Magellanic Clouds leads to a very low amplitude of the warp. If the force were due to an extragalactic magnetic field, its intensity would have to be very high, to generate the observed warps. An alternative hypothesis is explored: the accretion of the intergalactic medium over the disk. A cup-shaped distortion is expected, due to the transmission of the linear momentum; but, this effect is small and the predominant effect turns out to be the transmission of angular momentum, i.e. a torque giving an integral-sign shape warp. The torque produced by a flow of velocity ~100 km/s and baryon density \~10^{-25} kg/m^3 is enough to generate the observed warps and this mechanism offers quite a plausible explanation. First, because this order of accretion rate is inferred from other processes observed in the Galaxy, notably its chemical evolution. The inferred rate of infall of matter, ~1 solar-mass/yr, to the Galactic disc that this theory predicts agrees with the quantitative predictions of this chemical evolution resolving key issues, notably the G-dwarf problem. Second, because the required density of the intergalactic medium is within the range of values compatible with observation. By this mechanism, we can explain the warp phenomenon in terms of intergalactic accretion flows onto the disk of the galaxy.Comment: 18 pages, 11 figures, accepted to be published in A&

    Photometric scaling relations of antitruncated stellar discs in S0-Scd galaxies

    Get PDF
    It has been recently found that the characteristic photometric parameters of antitruncated discs in S0 galaxies follow tight scaling relations. We investigate if similar scaling relations are satisfied by galaxies of other morphological types. We have analysed the trends in several photometric planes relating the characteristic surface brightness and scalelengths of the breaks and the inner and outer discs of local antitruncated S0-Scd galaxies, using published data and fits performed to the surface brightness profiles of two samples of Type-III galaxies in the R and Spitzer 3.6 microns bands. We have performed linear fits to the correlations followed by different galaxy types in each plane, as well as several statistical tests to determine their significance. We have found that: 1) the antitruncated discs of all galaxy types from Sa to Scd obey tight scaling relations both in R and 3.6 microns, as observed in S0s; 2) the majority of these correlations are significant accounting for the numbers of the available data samples; 3) the trends are clearly linear when the characteristic scalelengths are plotted on a logarithmic scale; and 4) the correlations relating the characteristic surface brightnesses of the inner and outer discs and the breaks with the various characteristic scalelengths significantly improve when the latter are normalized to the optical radius of the galaxy. The results suggest that the scaling relations of Type-III discs are independent of the morphological type and the presence (or absence) of bars within the observational uncertainties of the available datasets, although larger and deeper samples are required to confirm this. The tight structural coupling implied by these scaling relations impose strong constraints on the mechanisms proposed for explaining the formation of antitruncated stellar discs in the galaxies across the whole Hubble Sequence (Abridged).Comment: Accepted for publication in Astronomy & Astrophysics, 18 pages, 12 figures, 7 table

    The extinction by dust in the outer parts of spiral galaxies

    Get PDF
    To investigate the distribution of dust in Sb and Sc galaxies we have analyzed near-infrared and optical surface photometry for an unbiased sample of 37 galaxies. Since light in the KK-band is very little affected by extinction by dust, the B−KB-K colour is a good indicator of the amount of extinction, and using the colour-inclination relation we can statistically determine the extinction for an average Sb/Sc galaxy. We find in general a considerable amount of extinction in spiral galaxies in the central regions, all the way out to their effective radii. In the outer parts, at DK,21_{K,21}, or at 3 times the typical exponential scale lengths of the stellar distribution , we find a maximum optical depth of 0.5 in BB for a face-on galaxy. If we impose the condition that the dust is distributed in the same way as the stars, this upper limit would go down to 0.1.Comment: 4 pages, postscript, gzip-compressed, uuencoded, includes 2 figures. Accepted for publication in Astronomy & Astrophysics, Letter
    • 

    corecore