16 research outputs found
A Randomized Phase II Trial Comparing the Efficacy and Safety of Pioglitazone, Clarithromycin and Metronomic Low-Dose Chemotherapy with Single-Agent Nivolumab Therapy in Patients with Advanced Non-small Cell Lung Cancer Treated in Second or Further Line (ModuLung)
Background:
Most non-small cell lung cancers occur in elderly and frequently comorbid patients. Therefore, it is necessary to evaluate the efficacy of biomodulatory active therapy regimen, concertedly interfering with tumor-associated homeostatic pathways to achieve tumor control paralleled by modest toxicity profiles.
Patients and Methods:
The ModuLung trial is a national, multicentre, prospective, open-label, randomized phase II trial in patients with histologically confirmed stage IIIB/IV squamous (n = 11) and non-squamous non-small cell (n = 26) lung cancer who failed first-line platinum-based chemotherapy. Patients were randomly assigned on a 1:1 ratio to the biomodulatory or control group, treated with nivolumab. Patients randomized to the biomodulatory group received an all-oral therapy consisting of treosulfan 250 mg twice daily, pioglitazone 45 mg once daily, clarithromycin 250 mg twice daily, until disease progression or unacceptable toxicity.
Results:
The study had to be closed pre-maturely due to approval of immune checkpoint inhibitors (ICi) in first-line treatment. Thirty-seven patients, available for analysis, were treated in second to forth-line. Progression-free survival (PFS) was significantly inferior for biomodulation (N = 20) vs. nivolumab (N = 17) with a median PFS (95% confidence interval) of 1.4 (1.2–2.0) months vs. 1.6 (1.4–6.2), respectively; with a hazard ratio (95% confidence interval) of 1.908 [0.962; 3.788]; p = 0.0483. Objective response rate was 11.8% with nivolumab vs. 5% with biomodulation, median follow-up 8.25 months. The frequency of grade 3–5 treatment related adverse events was 29% with nivolumab and 10% with biomodulation. Overall survival (OS), the secondary endpoint, was comparable in both treatment arms; biomodulation with a median OS (95% confidence interval) of 9.4 (6.0–33.0) months vs. nivolumab 6.9 (4.6–24.0), respectively; hazard ratio (95% confidence interval) of 0.733 [0.334; 1.610]; p = 0.4368. Seventy-five percent of patients in the biomodulation arm received rescue therapy with checkpoint inhibitors.
Conclusions:
This trial shows that the biomodulatory therapy was inferior to nivolumab on PFS. However, the fact that OS was similar between groups gives rise to the hypothesis that the well-tolerable biomodulatory therapy may prime tumor tissues for efficacious checkpoint inhibitor therapy, even in very advanced treatment lines where poor response to ICi might be expected with increasing line of therapy
Milk prolactin response and quarter milk yield after experimental infection with coagulase-negative staphylococci in dairy heifers
Coagulase-negative staphylococci (CNS) are the most common bacteria involved in subclinical mastitis in dairy cows. Remarkably, CNS-infected dairy heifers produce more milk than uninfected heifers. Because the lactation hormone prolactin (PRL) is also involved in mammary gland immunity, we investigated the milk PRL response and the mammary quarter milk yield following experimental CNS challenge. Eight healthy Holstein-Friesian heifers in mid-lactation were experimentally infected using a split-udder design with 3 different CNS strains: one Staphylococcus fleurettii (from sawdust bedding) and 2 Staphylococcus chromogenes strains (one isolate from a teat apex, the other isolate from a chronic intramammary infection). Three mammary quarters per heifer were simultaneously inoculated with 1.0 x 10(6) cfu, whereas the remaining mammary quarter was infused with sterile phosphate-buffered saline, serving as a control. An existing radioimmunoassay was modified, validated, and used to measure PRL frozen-thawed milk at various time points until 78 h after challenge. The mean milk PRL level tended to be higher in the CNS-challenged mammary quarters compared with the control mammary quarters (7.56 and 6.85 ng/mL, respectively). The increase in PRL over time was significantly greater in the CNS-challenged mammary quarters than in the control mammary quarters. However, no difference was found in the PRL response when comparing each individual CNS strain with the control mammary quarters. The mean mammary quarter milk yield tended to be lower in the CNS-infected mammary quarters than in the control mammary quarters (1.73 and 1.98 kg per milking, respectively). The greatest milk loss occurred in the mammary quarters challenged with the intramammary strain of S. chromogenes. Future observational studies are needed to elucidate the relation between PRL, the milk yield, and the inflammatory condition, or infection status, of the mammary gland