2,851 research outputs found
Moduli Redefinitions and Moduli Stabilisation
Field redefinitions occur in string compactifications at the one loop level.
We review arguments for why such redefinitions occur and study their effect on
moduli stabilisation and supersymmetry breaking in the LARGE volume scenario.
For small moduli, although the effect of such redefinitions can be larger than
that of the corrections in both the K\"ahler and scalar potentials,
they do not alter the structure of the scalar potential. For the less well
motivated case of large moduli, the redefinitions can dominate all other terms
in the scalar potential. We also study the effect of redefinitions on the
structure of supersymmetry breaking and soft terms.Comment: 21 pages, 3 figures; v2. references adde
Quantitative real-time imaging of intracellular FRET biosensor dynamics using rapid multi-beam confocal FLIM
Fluorescence lifetime imaging (FLIM) is a quantitative, intensity-independent microscopical method for measurement of diverse biochemical and physical properties in cell biology. It is a highly effective method for measurements of Förster resonance energy transfer (FRET), and for quantification of protein-protein interactions in cells. Time-domain FLIM-FRET measurements of these dynamic interactions are particularly challenging, since the technique requires excellent photon statistics to derive experimental parameters from the complex decay kinetics often observed from fluorophores in living cells. Here we present a new time-domain multi-confocal FLIM instrument with an array of 64 visible beamlets to achieve parallelised excitation and detection with average excitation powers of ~ 1–2 μW per beamlet. We exemplify this instrument with up to 0.5 frames per second time-lapse FLIM measurements of cAMP levels using an Epac-based fluorescent biosensor in live HeLa cells with nanometer spatial and picosecond temporal resolution. We demonstrate the use of time-dependent phasor plots to determine parameterisation for multi-exponential decay fitting to monitor the fractional contribution of the activated conformation of the biosensor. Our parallelised confocal approach avoids having to compromise on speed, noise, accuracy in lifetime measurements and provides powerful means to quantify biochemical dynamics in living cells
Sinus of valsalva aneurysm in Blau's syndrome
Blau syndrome is a rare granulomatous disorder inherited in an autosomal dominant manner characterized by the early appearance of granulomatous arthritis, skin rash and anterior uveitis. There are very few data on the cardiovascular manifestations of Blau syndrome. Here we report the first case of sinus of valsava aneurysm in Blau syndrome. In isolated unruptured aneurysms of a sinus of Valsalva without compromise of the aortic valve and/or the coronary ostia, repair may be accomplished by simple placation of the aneurysm or excision of the aneurysm(s) and patch closure of the defect(s) between the aortic annulus and the sinu-vascular ridge. Because of the particular conditions in our case, the repair was performed with replacement of the aortic valve and root using a composite graft employing a modified Bentall's technique
Non-thermal emission processes in massive binaries
In this paper, I present a general discussion of several astrophysical
processes likely to play a role in the production of non-thermal emission in
massive stars, with emphasis on massive binaries. Even though the discussion
will start in the radio domain where the non-thermal emission was first
detected, the census of physical processes involved in the non-thermal emission
from massive stars shows that many spectral domains are concerned, from the
radio to the very high energies.
First, the theoretical aspects of the non-thermal emission from early-type
stars will be addressed. The main topics that will be discussed are
respectively the physics of individual stellar winds and their interaction in
binary systems, the acceleration of relativistic electrons, the magnetic field
of massive stars, and finally the non-thermal emission processes relevant to
the case of massive stars. Second, this general qualitative discussion will be
followed by a more quantitative one, devoted to the most probable scenario
where non-thermal radio emitters are massive binaries. I will show how several
stellar, wind and orbital parameters can be combined in order to make some
semi-quantitative predictions on the high-energy counterpart to the non-thermal
emission detected in the radio domain.
These theoretical considerations will be followed by a census of results
obtained so far, and related to this topic... (see paper for full abstract)Comment: 47 pages, 5 postscript figures, accepted for publication in Astronomy
and Astrophysics Review. Astronomy and Astrophysics Review, in pres
On the Effective Description of Large Volume Compactifications
We study the reliability of the Two-Step moduli stabilization in the type-IIB
Large Volume Scenarios with matter and gauge interactions. The general analysis
is based on a family of N=1 Supergravity models with a factorizable Kaehler
invariant function, where the decoupling between two sets of fields without a
mass hierarchy is easily understood. For the Large Volume Scenario particular
analyses are performed for explicit models, one of such developed for the first
time here, finding that the simplified version, where the Dilaton and Complex
structure moduli are regarded as frozen by a previous stabilization, is a
reliable supersymmetric description whenever the neglected fields stand at
their leading F-flatness conditions and be neutral. The terms missed by the
simplified approach are either suppressed by powers of the Calabi-Yau volume,
or are higher order operators in the matter fields, and then irrelevant for the
moduli stabilization rocedure. Although the power of the volume suppressing
such corrections depends on the particular model, up to the mass level it is
independent of the modular weight for the matter fields. This at least for the
models studied here but we give arguments to expect the same in general. These
claims are checked through numerical examples. We discuss how the factorizable
models present a context where despite the lack of a hierarchy with the
supersymmetry breaking scale, the effective theory still has a supersymmetric
description. This can be understood from the fact that it is possible to find
vanishing solution for the auxiliary components of the fields being integrated
out, independently of the remaining dynamics. Our results settle down the
question on the reliability of the way the Dilaton and Complex structure are
treated in type-IIB compactifications with large compact manifold volumina.Comment: 23 pages + 2 appendices (38 pages total). v2: minor improvements,
typos fixed. Version published in JHE
Effect of peri-implant mucosal thickness on esthetic outcomes and the efficacy of soft tissue augmentation procedures: Consensus report of group 2 of the SEPA/DGI/OF workshop
OBJECTIVES: The aim of this study was to comprehensively assess the literature in terms of the effect of peri‐implant mucosal thickness on esthetic outcomes and the efficacy of soft tissue augmentation procedures to increase the mucosal thickness with autogenous grafts or soft tissue substitutes. MATERIAL AND METHODS: Two systematic reviews (SR) were performed prior to the consensus meeting to assess the following questions. Review 1, focused question: In systemically healthy patients with an implant‐supported fixed prosthesis, what is the influence of thin as compared to thick peri‐implant mucosa on esthetic outcomes? Review 2, focused question 1: In systemically healthy humans with at least one dental implant (immediate or staged implant), what is the efficacy of connective tissue graft (CTG), as compared to absence of a soft tissue grafting procedure, in terms of gain in peri‐implant soft tissue thickness (STT) reported by randomized controlled clinical trials (RCTs) or controlled clinical trials (CCTs)? Review 2, focused question 2: In systemically healthy humans with at least one dental implant (immediate or staged implant), what is the efficacy of CTG, as compared to soft tissue substitutes, in terms of gain in peri‐implant STT reported by RCTs or CCTs? The outcomes of the two SRs, the consensus statements, the clinical implications, and the research recommendations were discussed and subsequently approved at the consensus meeting during the group and plenary sessions. CONCLUSIONS: There was a tendency of superior esthetic outcomes in the presence of a thick mucosa. The connective tissue graft remains the standard of care in terms of increasing mucosa thickness
Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND)
A key challenge in medical imaging is determining a precise correspondence between image properties and tissue microstructure. This comparison is hindered by disparate scales and resolutions between medical imaging and histology. We present a new technique, 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND), for registering medical images with 3D histology to overcome these limitations. Ex vivo 120 × 120 × 200 μm resolution diffusion-MRI (dMRI) data was acquired at 7 T from adult C57Bl/6 mouse hippocampus. Tissue was then optically cleared using CLARITY and stained with cellular markers and confocal microscopy used to produce high-resolution images of the 3D-tissue microstructure. For each sample, a dense array of hippocampal landmarks was used to drive registration between upsampled dMRI data and the corresponding confocal images. The cell population in each MRI voxel was determined within hippocampal subregions and compared to MRI-derived metrics. 3D-BOND provided robust voxel-wise, cellular correlates of dMRI data. CA1 pyramidal and dentate gyrus granular layers had significantly different mean diffusivity (p > 0.001), which was related to microstructural features. Overall, mean and radial diffusivity correlated with cell and axon density and fractional anisotropy with astrocyte density, while apparent fibre density correlated negatively with axon density. Astrocytes, axons and blood vessels correlated to tensor orientation
Why do GPs with a special interest in headache investigate headache presentations with neuroradiology and what do they find?
The general practitioner with a special interest in headache offers an important contribution to the management of headache in primary care where the majority of presentations take place. A number of guidelines have been developed for neuroradiological investigation of headache, but their clinical utility and relevance is not known. Fourteen general practitioners with a special interest in headache recorded consecutive headache consultations over a 3-month period, whether patients were investigated with neuroradiology and if so the reason for investigation and outcome. Reason for investigation was compared to the guidelines published for the use in primary care. 895 patients were seen, of whom 270 (30.1%) were investigated. 47% of indications were outside the guidance framework used, the most common reason for investigation being reassurance. Of those investigated, 5.6% showed positive findings but only 1.9% of findings were felt to be of clinical significance. General practitioners with a special interest investigated with neuroradiology a greater level than general practitioners, but less than neurologists. However, yields of significant findings are broadly comparative across all groups. This report confirms other studies that suggest that even when there is a high level of clinical suspicion, yields of significant findings are very low
Brain structural and functional recovery following initiation of combination antiretroviral therapy
NeuroAIDS persists in the era of combination antiretroviral therapies. We describe here the recovery of brain structure and function following 6 months of therapy in a treatment-naive patient presenting with HIV-associated dementia. The patient’s neuropsychological test performance improved and his total brain volume increased by more than 5 %. Neuronal functional connectivity measured by magnetoencephalography changed from a pattern identical to that observed in other HIV-infected individuals to one that was indistinguishable from that of uninfected control subjects. These data suggest that at least some of the effects of HIV on the brain can be fully reversed with treatment
- …