55,282 research outputs found
The Deep Lens Survey Transient Search I : Short Timescale and Astrometric Variability
We report on the methodology and first results from the Deep Lens Survey
transient search. We utilize image subtraction on survey data to yield all
sources of optical variability down to 24th magnitude. Images are analyzed
immediately after acquisition, at the telescope and in near-real time, to allow
for followup in the case of time-critical events. All classes of transients are
posted to the web upon detection. Our observing strategy allows sensitivity to
variability over several decades in timescale. The DLS is the first survey to
classify and report all types of photometric and astrometric variability
detected, including solar system objects, variable stars, supernovae, and short
timescale phenomena. Three unusual optical transient events were detected,
flaring on thousand-second timescales. All three events were seen in the B
passband, suggesting blue color indices for the phenomena. One event (OT
20020115) is determined to be from a flaring Galactic dwarf star of spectral
type dM4. From the remaining two events, we find an overall rate of \eta = 1.4
events deg-2 day-1 on thousand-second timescales, with a 95% confidence limit
of \eta < 4.3. One of these events (OT 20010326) originated from a compact
precursor in the field of galaxy cluster Abell 1836, and its nature is
uncertain. For the second (OT 20030305) we find strong evidence for an extended
extragalactic host. A dearth of such events in the R passband yields an upper
95% confidence limit on short timescale astronomical variability between 19.5 <
R < 23.4 of \eta_R < 5.2. We report also on our ensemble of astrometrically
variable objects, as well as an example of photometric variability with an
undetected precursor.Comment: 24 pages, 12 figures, 3 tables. Accepted for publication in ApJ.
Variability data available at http://dls.bell-labs.com/transients.htm
Molecular and functional characterization of gap junctions in the avian inner ear.
To analyze the fundamental role of gap junctions in the vertebrate inner ear, we examined molecular and functional characteristics of gap junctional communication (GJC) in the auditory and vestibular system of the chicken. By screening inner ear tissues for connexin isoforms using degenerate reverse transcription-PCR, we identified, in addition to chicken Cx43 (cCx43) and the inner-ear-specific cCx30, an as yet uncharacterized connexin predicted to be the ortholog of the mammalian Cx26. In situ hybridization indicated that cCx30 and cCx26 transcripts were both widely expressed in the cochlear duct and utricle in an overlapping pattern, suggesting coexpression of these isoforms similar to that in the mammalian inner ear. Immunohistochemistry demonstrated that cCx43 was present in gap junctions connecting supporting cells of the basilar papilla, in which its immunofluorescence colocalized with that of cCx30. However, cCx43 was absent from supporting cell gap junctions of the utricular macula. This variation in the molecular composition of gap junction plaques coincided with differences in the functional properties of GJC between the auditory and vestibular sensory epithelia. Fluorescence recovery after photobleaching, adapted to examine the diffusion of calcein in inner ear explants, revealed asymmetric communication pathways among supporting cells in the basilar papilla but not in the utricular macula. This study supports the hypothesis that the coexpression of Cx26/Cx30 is unique to gap junctions in the vertebrate inner ear. Furthermore, it demonstrates asymmetric GJC within the supporting cell population of the auditory sensory epithelium, which might mediate potassium cycling and/or intercellular signaling
Randomized Algorithms for the Loop Cutset Problem
We show how to find a minimum weight loop cutset in a Bayesian network with
high probability. Finding such a loop cutset is the first step in the method of
conditioning for inference. Our randomized algorithm for finding a loop cutset
outputs a minimum loop cutset after O(c 6^k kn) steps with probability at least
1 - (1 - 1/(6^k))^c6^k, where c > 1 is a constant specified by the user, k is
the minimal size of a minimum weight loop cutset, and n is the number of
vertices. We also show empirically that a variant of this algorithm often finds
a loop cutset that is closer to the minimum weight loop cutset than the ones
found by the best deterministic algorithms known
Comment on "Observation of neutronless fusion reactions in picosecond laser plasmas"
The paper by Belyaev et al. [Phys. Rev. E {\bf 72}, 026406 (2005)] reported
the first experimental observation of alpha particles produced in the
thermonuclear reaction B()Be induced by
laser-irradiation on a B polyethylene (CH) composite target. The
laser used in the experiment is characterized by a picosecond pulse duration
and a peak of intensity of 2 W/cm. We suggest that both the
background-reduction method adopted in their detection system and the choice of
the detection energy region of the reaction products are possibly inadequate.
Consequently the total yield reported underestimates the true yield. Based on
their observation, we give an estimation of the total yield to be higher than
their conclusion, i.e., of the order of 10 per shot.Comment: 3 figures, accepted for publication in the Comment section of
Physical Review
Comptonization and the Spectra of Accretion-Powered X-Ray Pulsars
Accretion-powered X-ray pulsars are among the most luminous X-ray sources in
the Galaxy. However, despite decades of theoretical and observational work
since their discovery, no satisfactory model for the formation of the observed
X-ray spectra has emerged. In this paper, we report on a self-consistent
calculation of the spectrum emerging from a pulsar accretion column that
includes an explicit treatment of the bulk and thermal Comptonization occurring
in the radiation-dominated shocks that form in the accretion flows. Using a
rigorous eigenfunction expansion method, we obtain a closed-form expression for
the Green's function describing the upscattering of monochromatic radiation
injected into the column. The Green's function is convolved with
bremsstrahlung, cyclotron, and blackbody source terms to calculate the emergent
photon spectrum. We show that energization of photons in the shock naturally
produces an X-ray spectrum with a relatively flat continuum and a high-energy
exponential cutoff. Finally, we demonstrate that our model yields good
agreement with the spectra of the bright pulsar Her X-1 and the low luminosity
pulsar X Per.Comment: 6 Pages, 2 Figures, To appear in "The Multicoloured Landscape of
Compact Objects and their Explosive Progenitors" (Cefalu, Sicily, June 2006).
Eds. L. Burderi et al. (New York: AIP
- …