34 research outputs found

    Identifizierung und Charakterisierung der Interaktion von Marburg-Virus VP30 mit den zellulären Proteinen PIAS1, PIAS2 und SETDB1

    Get PDF
    Marburg-Virus (MARV) und Ebola-Virus (EBOV), Mitglieder der Virusfamilie der Filoviridae, lösen schwere, oft tödlich verlaufende Erkrankungen im Menschen und nicht-menschlichen Primaten aus. Der EBOV Ausbruch in Westafrika von 2014-2016 mit mehr als 28.000 Fällen und 11.000 Toten hat gezeigt, wie wichtig detailliertes Wissen über die Infektionsverläufe ist, um neue Impfstoffe und antivirale Medikamente entwickeln zu können. Im Rahmen der vorliegenden Arbeit wurden neue zelluläre Interaktionspartner des MARV VP30 identifiziert, die im Replikationszyklus des Virus eine wichtige Rolle spielen. Unter Verwendung von Hefe-Zwei-Hybrid-Assays konnten fünf neue Interaktionspartner des Marburg-Virus Proteins VP30 identifiziert werden, bei denen es sich um die Proteine PIAS1, PIAS2, SETDB1, RBBP6 und HECDT1 handelt. PIAS1, PIAS2 und SETDB1 wurden ausgewählt, kloniert und weiter charakterisiert. Die Interaktion von PIAS1 und PIAS2 mit MARV VP30 wurde in humanen Zellen mit Hilfe von Ko-Immunpräzipitationen bestätigt. Außerdem konnte gezeigt werden, dass beide Proteine auch mit EBOV VP30 interagieren. Die Interaktion von MARV VP30 und SETDB1 wurde in Huh7-Zellen bestätigt. Für die Interaktion von MARV VP30 und PIAS2β wurde gezeigt, dass der N-Terminus hierfür verantwortlich ist, wobei die Homooligomerisierungsdomäne keine Rolle spielt. Da sowohl MARV als auch EBOV VP30 mit PIAS2β interagieren, ist zu vermuten, dass ein konservierter Bereich beider Proteine die Interaktion vermittelt. Kolokalisationsstudien mittels Immunfluoreszenz bestätigen die Ergebnisse und legen eine Interaktion von MARV VP30 und PIAS2β im Zellkern nahe. Bei den PIAS-Proteinen handelt es sich um Inhibitoren des JAK-STAT-Signalkaskade, die als E3-Sumo-Ligase wirken und eine Reihe von Transkriptionsfaktoren regulieren können. In dieser Arbeit konnte gezeigt werden, dass PIAS1 und PIAS2 in der Lage sind die Aktivierung von IFIT2 zu verhindern, bei dem es sich um ein wichtiges Interferon-stimuliertes antivirales Protein handelt, das auch in Filovirusinfektionen inhibiert ist. Außerdem wurde gezeigt, dass PIAS1 und PIAS2 in der Lage sind die Transkription und Replikation in Marburg-Virus-spezifischen Minigenom-Assays zu steigern. Im Gegensatz dazu war die Transkription und Replikation in Abwesenheit von PIAS2 in Minigenom-Assays und während der Infektion von PIAS2-KO-Zellen verringert. Dies deutet darauf hin, dass PIAS1 und PIAS2 einen fördernden Einfluss auf eine MARV-Infektion ausüben könnten. Weitere Analysen müssen zeigen, ob möglicherweise ein Proteinkomplex aus Teilen der gefundenen Interaktionspartner eine Rolle spielt, da Interaktionen der gefundenen Proteine untereinander dies nahelegen. Die in der vorliegenden Arbeit identifizierten und charakterisierten Interaktionspartner von VP30 sind relevant für MARV und EBOV und für die virale Transkription bedeutsam. Die weitere Erforschung des genauen Wirkmechanismus ist von zentraler Bedeutung

    Die IRE1-abhängige ER-Stress-Antwort wird durch antagonistische Effekte der Marburg Virus Proteine GP und VP30 ausbalanciert

    Get PDF
    Das Marburg Virus (MARV) gehört, wie das Ebola Virus (EBOV), zur Familie der Filoviridae. Im Menschen führt eine Infektion mit dem MARV häufig zu schweren Fiebererkrankungen mit einer Letalitätsrate von bis zu 90%. Aufgrund dieser hohen Letalitätsrate, und da bisher keine Impfstoffe oder Therapiemöglichkeiten zugelassen sind, werden Filoviren in die höchste biologische Sicherheitsstufe 4 eingestuft. Um neue Ansatzpunkte für Therapeutika zu finden, ist es essentiell die Interaktionen zwischen dem MARV und der Wirtszelle genau zu charakterisieren. Für seine Replikation ist das MARV, wie alle Viren, vollständig auf die Wirtszelle angewiesen, und die Infektion bedeutet eine Belastung für die Ressourcen der Zelle. Während der Infektion wird das MARV Oberflächenprotein, das Glykoprotein GP, am rauen Endoplasmatischen Retikulum (ER) synthetisiert, im Lumen des ER gefaltet und posttranslational stark glykosyliert. Diese Prozesse verzögern den Transport des GP, wodurch es im ER akkumuliert, bevor es an die Plasmamembran transportiert wird. In Vorarbeiten konnte gezeigt werden, dass die transiente Expression des MARV GP zu einer Überlastung des ER führt (ER-Stress) und eine Inositol-requiring enzyme 1 α (IRE1)-abhängigen ER-Stress-Antwort führt. Wird IRE1 aktiviert, ist es durch eine Ribonuklease-Aktivität in der Lage die X-box binding protein 1 unspliced (XBP1u) mRNA zu spleißen. Der dadurch entstehende Transkriptionsfaktor X-box binding protein 1 spliced (XBP1s) migriert in den Zellkern und aktiviert über die Promotoren unfolded protein response element (UPRE) und ER stress element (ERSE) viele verschiedene Gene, um die Homöostase im ER wiederzuerlangen. Eine langanhaltende Aktivierung von IRE1 hingegen führt zur Apoptose. Die ER-Stress-Antwort kann somit von Vor- oder Nachteil für die virale Replikation sein. In der vorliegenden Arbeit konnte die GP-abhängige Aktivierung der ER-Stress-Antwort im Detail charakterisiert werden. Die Expression des GP führt zu einer Aktivierung von IRE1, des Transkriptionsfaktors XBP1s und in der Folge auch des Promotors UPRE. Verantwortlich für diese Aktivierung sind die voraussichtlich die molekulare Größe des GP und die vielen Glykosylierungen innerhalb der Mucin-ähnlichen Domäne des GP. In Vorarbeiten zeigte sich, dass die ER-Stress-Antwort während einer MARV Infektion nicht aktiviert wird. Der Grund hierfür ist das virale Protein VP30, welches ein multifunktionales Protein und viraler Transkriptionsfaktor ist und eine Reduktion der IRE1-abhängigen ER-Stress-Antwort vermitteln kann. Der genaue Mechanismus war bislang unklar. In dieser Arbeit konnte zum ersten Mal gezeigt werden, dass VP30 RNA-abhängig mit dem XBP1u Protein interagiert. XBP1u rekrutiert seine eigene mRNA an die ER-Membran, sodass sich diese in räumlicher Nähe zu IRE1 befindet. Folglich könnte die Interaktion von VP30 mit dem XBP1u mRNA/XBP1u Protein Komplex die XBP1u mRNA für IRE1 unzugänglich machen und somit das Spleißen unterbinden. Weiter konnte hier gezeigt werden, dass eine präzise Regulation der ER-Stress-Antwort wichtig für die virale Vermehrung des MARV ist, da sowohl eine aktivierte, als auch eine unterbundene IRE1-abhängige ER-Stress-Antwort, die Vermehrung des Virus beeinflusst. Der aktuelle Forschungsstand zeigt, dass die Regulation der ER-Stress-Antwort wichtig ist, um eine effiziente MARV Freisetzung zu gewährleisten. Dies ist somit ein interessanter Ansatzpunkt für neue Therapeutika

    Effects of an Impulse Frequency Dependent 10-Week Whole-body Electromyostimulation Training Program on Specific Sport Performance Parameters

    Get PDF
    The difference in the efficacy of altered stimulation parameters in whole-body-electromyostimulation (WB-EMS) training remains largely unexplored. However, higher impulse frequencies (>50 Hz) might be most adequate for strength gain. The aim of this study was to analyze potential differences in sports-related performance parameters after a 10-week WB-EMS training with different frequencies. A total of 51 untrained participants (24.9 ± 3.9 years, 174 ± 9 cm, 72.4 ± 16.4 kg, BMI 23.8 ± 4.1, body fat 24.7 ± 8.1 %) was randomly divided into three groups: one inactive control group (CON) and two training groups. They completed a 10-week WB-EMS program of 1.5 sessions/week, equal content but different stimulation frequencies (training with 20 Hz (T20) vs. training with 85 Hz (T85)). Before and after intervention, all participants completed jumping (Counter Movement Jump (CMJ), Squat Jump (SJ), Drop Jump (DJ)), sprinting (5m, 10m, 30m), and strength tests (isometric trunk flexion/extension). One-way ANOVA was applied to calculate parameter changes. Post-hoc least significant difference tests were performed to identify group differences. Significant differences were identified for CMJ (p = 0.007), SJ (p = 0.022), trunk flexion (p = 0.020) and extension (p=.013) with significant group differences between both training groups and CON (not between the two training groups T20 and T85). A 10-week WB-EMS training leads to significant improvements of jump and strength parameters in untrained participants. No differences could be detected between the frequencies. Therefore, both stimulation frequencies can be regarded as adequate for increasing specific sport performance parameters. Further aspects as regeneration or long term effects by the use of different frequencies still need to be clarified

    A Syrup-Water Mixture Increases Performance in the Yo-Yo Intermittent Recovery Test after a Soccer-Specific Preload in the Hoff Test: A Double-Blind Crossover Study

    Get PDF
    Background: The positive effect of carbohydrates from commercial beverages on soccer-specific exercise has been clearly demonstrated. However, no study is available that uses a home-mixed beverage in a test where technical skills were required. Methods: Nine subjects participated vol-untarily in this double-blind, randomized, placebo-controlled crossover study. On three testing days, the subjects performed six Hoff tests with a 3-min active break as a preload and then the Yo-Yo Intermittent Running Test Level 1 (Yo-Yo IR1) until exhaustion. On test days 2 and 3, the subjects received either a 69 g carbohydrate-containing drink (syrup–water mixture) or a carbo-hydrate-free drink (aromatic water). Beverages were given in several doses of 250 mL each: 30 min before and immediately before the exercise and after 18 and 39 min of exercise. The primary target parameters were the running performance in the Hoff test and Yo-Yo IR1, body mass and heart rate. Statistical differences between the variables of both conditions were analyzed using paired samples t-tests. Results: The maximum heart rate in Yo-Yo IR1 showed significant differ-ences (syrup: 191.1 ± 6.2 bpm; placebo: 188.0 ± 6.89 bpm; t(6) = −2.556; p = 0.043; dz = 0.97). The running performance in Yo-Yo IR1 under the condition syrup significantly increased by 93.33 ± 84.85 m (0–240 m) on average (p = 0.011). Conclusions: The intake of a syrup–water mixture with a total of 69 g carbohydrates leads to an increase in high-intensive running performance after soccer specific loads. Therefore, the intake of carbohydrate solutions is recommended for intermit-tent loads and should be increasingly considered by coaches and players

    Die Funktion der Coiled-Coil-Domäne im Nukleoprotein des Ebolavirus

    No full text
    Das Ebolavirus (EBOV) bildet mit dem Marburgvirus die Familie der Filoviren, die aufgrund ihres einzelsträngigen, negativ orientierten RNA-Genoms der Ordnung der Mononegavirales zugeteilt werden. Filoviren verursachen beim Menschen und bei nicht-menschlichen Primaten ein schweres hämorrhagisches Fieber mit einer Mortalitätsrate bis zu 90%. Deshalb und weil es bisher keine spezifische Therapie und keine Impfung gibt, werden Filoviren als Pathogene der Sicherheitsstufe 4 eingestuft. Der Nukleokapsidkomplex des EBOV besteht aus dem nicht-segmentierten RNAGenom sowie dem Nukleokapsidprotein NP, der viralen Polymerase L, dem Polymerase-Ko-Faktor VP35 sowie VP30 besteht. Gegenstand dieser Arbeit ist eine Coiled-Coil-Domäne innerhalb des NP, deren Einfluss auf verschiedene Funktionen des NP untersucht werden sollte. Hierfür wurde die Rolle der Coiled-Coil bei der Interaktion mit VP30 und VP35 analysiert. NPMutanten, die entweder keine Coiled-Coil-3D-Struktur oder gar keine Coiled-Coil mehr aufwiesen, konnten hier zwar noch mit VP35, aber nicht mehr mit VP30 interagieren. Die Gründe hierfür sind vermutlich, dass VP35 mehrere Bindungsstellen besitzt und VP30 entweder im Bereich der Coiled-Coilbindet oder die durch die Coiled-Coil vermittelte Konformation des NP benötigt. Weiterhin befasst sich diese Arbeit mit der Rolle der Coiled-Coil-Domäne bei der NPNP- Interaktion und dem self assembly. Immunfluoreszenzanalysen ergaben, dass die Bildung von NP-Einschlusskörpern, so genannter inclusions, von der Coiled-Coil- Domäne abhängt. Coiled-Coil-defiziente Mutanten können aber noch durch NPwt in inclusions rekrutiert werden, die Fähigkeit zur Selbstinteraktion ist also nur eingeschränkt. Mittels eines Complementation Assays konnte gezeigt werden, dass die Coiled-Coil-Domäne allein ausreichend für eine NP-NP Bindung sein kann. Immunelektronenmikroskopischen Analysen konnten zudem zeigen, dass die Bildung von NP-Helices, welche das Gerüst der Nukleokapside darstellen, ebenfalls nur bei intakter Coiled-Coil-Domäne oder in Gegenwart von NPwt möglich ist. Eine Rolle könnte hierbei entweder eine durch die Coiled-Coil-Domäne vermittelte Oligomerisierung des NP oder RNA-Interaktion spielen, welche zur Bildung von Helices wichtig ist. Im letzten Teil der Arbeit wurde der Einfluss Coiled-Coil-Domäne auf die virale Transkription untersucht. Hierbei zeigte sich im iVLP-Assay, dass eine nicht intakte Coiled-Coil einen dominant negativen Effekt auf die Transkription hat. Dies ist vermutlich dadurch bedingt, dass ohne intakte Coiled-Coil keine NP-Helices gebildet werden können und so auch keine regulären Nukleokapside, welche für die Polymerase als Matrize zur Transkription und Replikation dienen

    Die Phosphorylierung des Ebolavirus VP30 reguliert die virale Transkription und Replikation

    No full text
    Das Ebolavirus bildet zusammen mit dem Marburgvirus die Familie der Filoviridae, die ein einzelsträngiges nichtsegmentiertes RNA Genom in negativer Orientierung besitzen. Filoviren verursachen schwere hämorrhagische Fieber in Menschen und Affen, weswegen sie als BSL4-Pathogene klassifiziert werden. Die Transkriptions- und Replikationseinheit des Virus bildet der Nukleokapsidkomplex, der sich aus dem RNA-Genom sowie den Nukleokapsidproteinen NP, VP30, VP35 und L zusammensetzt. Dabei agiert VP30 als essentieller Ebolavirus-spezifischer Transkriptionsfaktor, der für die Replikation nicht benötigt wird. Die Aktivität als Transkriptionsfaktor wird über die Phosphorylierung des Proteins reguliert. Nichtphosphoryliertes VP30 unterstützt die Synthese der viralen mRNAs in einem Minigenomsystem, während das phosphorylierte VP30 die Transkription nicht aktivieren kann. Im ersten Teil der vorliegenden Arbeit wurde der Einfluss der VP30 Phosphorylierung auf die Regulation des Übergangs von viraler Transkription zu Replikation untersucht. Dabei stand im Vordergrund der Einfluss der Phosphorylierung auf die Replikation. Mit Hilfe von phospho-mimetischen Mutanten des VP30 konnte gezeigt werden, dass phosphoryliertes VP30 die Replikation fördert, während dephosphoryliertes VP30 einen hemmenden Effekt auf die Replikation besaß. Weiterhin wurde die Interaktion von VP30 mit den anderen Komponenten des Nukleokapsidkomplexes untersucht. Dabei wurde eine bisher unbekannte Interaktion des VP30 mit dem Polymerase Co-Faktor VP35 beschrieben, die vom Phosphorylierungsstatus des VP30 beeinflusst wurde. Möglicherweise führt die phosphorylierungsabhängige Interaktion des VP30 mit VP35 zu einem Ausschluss von VP30 aus einem putativen Transkriptasekomplex und dadurch zur Hemmung der Transkription und Stimulierung der Replikation. Außerdem konnte in der vorliegenden Arbeit gezeigt werden, dass eine dynamische Phosphorylierung des VP30 essentiell für die initialen Schritte der Primären Transkription in frühen Stadien des viralen Lebenszyklus ist. Eine dynamische Phosphorylierung des VP30 an Serinrest 29 war ausreichend für die Generierung eines rekombinanten Ebolavirus mit wildtypischen Eigenschaften. Im Gegensatz dazu ließ sich ein stabiles rekombinantes Virus mit Serinrest 30 als einziger Phosphoakzeptorstelle nicht herstellen und resultierte im Auftreten von kompensatorischen Mutationen innerhalb der VP30 Phosphorylierungsdomäne. Die im Rahmen dieser Arbeit gewonnen Ergebnisse unterstreichen die Bedeutung der VP30 Phosphorylierung für den viralen Replikationszyklus: die dynamische Phosphorylierung des VP30 ist in frühen Stadien des Infektionszyklus für die Primäre Transkription essentiell und besitzt ebenfalls einen Einfluss auf den Übergang von viraler Transkription zu Replikation

    The species-specific effects of guinea pig adaptive mutations in Marburg virus VP40 and L on the protein’s functions and viral fitness

    No full text
    Marburg virus (MARV) is a highly pathogenic virus that causes severe, often lethal diseases specifically in humans and non-human primates. In rodents MARV is non-pathogenic. However, sequential passaging of MARV in rodents results in selection of a rodent-lethal virus. Lofts et al. established a guinea pig-lethal MARV containing only four non-silent amino acid changes in viral genome (Lofts et al., 2007). One amino acid substitution (D184N) was detected in the viral matrix protein VP40 and three amino acid substitutions were detected in the RNA-dependent RNA polymerase L (S741C, D758A and A759D). We analyzed the effects of the guinea pig-adaptive mutations on the functions of VP40 and L in a comparative study including human and guinea pig cells. Functional analyses were performed with ectopically expressed VP40D184N and L mutants by using different assays. The influence of the D184N mutation in VP40 on the replicative capacities of MARV in guinea pig cells was analyzed by infection of cells with recombinant MARV containing the D184N mutation in VP40. The first part of the study demonstrated that a recombinant rMARV containing only the D184N amino acid substitution in VP40 displayed a higher level of viral fitness specifically in guinea pig, but not in human cells. The mutant virus showed higher replicative capacities, enlarged inclusion bodies and enhanced infectivity only in guinea pig cells. Detailed comparative analysis of VP40 functions, in human and guinea pig cells, indicated that the membrane binding capabilities and the interferon antagonistic function were not altered by the D184N amino acid substitution. However, presence of the D184N mutation in VP40 enhanced the production of VP40-induced virus-like particles (VLPs) specifically in guinea pig cells. In addition, the amount of NP in infectious virus-like particles (iVLPs) and virus preparations was enhanced in presence of the D184N mutation in VP40 specifically in guinea pig cells. These data might partially explain the higher infectivity of VP40D184N containing iVLPs compared to wildtype VP40 containing iVLPs. Most importantly, the inhibitory capacity of VP40 on replication and transcription was species-specifically lowered by the D184N mutation in VP40, allowing significantly higher levels of replication and transcription in guinea pig cells. The second part of the study focused on the importance of the mutations in the L protein observed in the guinea pig-lethal MARV. Interestingly, only the S714C substitution increased replication in both species while the other mutations, D758A and A759D severely impaired the polymerase function. All L mutant proteins displayed proper expression and were able to localize into inclusion bodies which represent the sites of viral transcription/replication. Finally, co-expression of plasmids encoding L with the S741C amino acid substitution and VP40D184N in guinea pig cells resulted in eight fold higher levels of replication and transcription in comparison to human cells. This suggested that the D184N mutation in VP40 and the S741C mutation in L together significantly improve replication of MARV in guinea pig cells. Altogether these data suggests that the D184N substitution in VP40 and the S714C substitution in L can contribute to the increased pathogenicity of guinea pig-lethal MARV

    Function of the Viral Matrix Proteins VP40 and VP24 for the Life Cycle of Ebola Virus

    No full text
    Ebola virus (EBOV), a member of the family Filoviridae in the order Mononegavirales, is the causative agent of a severe haemorrhagic fever. Due to its high case fatality rate of up to 90% and to the fact that no approved vaccination or treatment is available for EBOV infection, it is classified as a biosafety level 4 (BSL4) agent, which restricts reasearch on it to a few facilities worldwide. Systems that model individual aspects of the viral life cycle under BSL2 conditions are, therefore, highly desirable. Based on available reverse genetics systems we have developed several new systems that allow the analysis of viral genome transcription, replication and packaging, as well as nucleocapsid morphogenesis, particle formation, budding, entry and initial transcription in target cells under BSL2 conditions. We were able to model two of these steps, morphogenesis of a fully functional nucleocapsid and initital transcription in target cells, for the first time for a negative strand RNA-virus, which is a significant advantage in reverse genetics systems for these viruses. The established systems were then used to analyze the role of EBOV proteins, particularly the matrix proteins VP24 and VP40, in the viral life cycle. The role of VP24, the minor matrix protein of EBOV, has long been enigmatic. Recently, it has been shown to be involved in interferon antagonism; however, data regarding a possible involvement of VP24 in nucleocapsid morphogenesis and particle formation have remained controversial. Using a newly developed infectious virus-like particle assay with na¨ıve target cells we were able to show that VP24 is not necessary for budding of particles or genome packaging, but that it is indispensable for the formation of functional nucleocapsids. This is the first functional evidence for a role of VP24 in nucleocapsid formation. Although the role of the major matrix protein, VP40, is much better understood, virtually nothing is known about the function of the different oligomeric forms of VP40, namely dimers, hexamers and octamers. Previously, we have been able to show that VP40 octamerization is indispensable for the viral life cycle. As part of this work we have further analyzed the role of VP40 octamerization. Also, based on the available crystal structures for VP40 we designed and characterized a dimerization incompetent VP40 mutant and included this mutant in our studies. We were able to show that VP40 dimerization is a prerequisite for budding, while octamerization does not play a role in this process. Also, VP40 octamerization is not important for packaging or the formation of a functional nucleocapsid. However, VP40 octamers seem to influence transcription and/or replication of viral genomes, a phenomenon that has been previously described for the matrix protein of Rabies virus, another member of Mononegavirales. Also, our data suggest that VP40 is involved in inhibition of cellular transcription and/or translation, a phenomenon widely known for matrix proteins of Mononegavirales, and that VP40 dimerization is important for this function. Finally, we analyzed the interactions of the nucleocapsid protein NP with VP40. We were, for the first time, able to directly show an interaction between these two proteins, and have mapped the interaction domain on VP40 to two β-strands in the N-terminal domain. Based on the crystal structure of VP40 we have identified two residues in this region that may be crucial for the interaction with NP. This work has increased our understanding of the role of EBOV matrix proteins in the viral life cycle, and has revealed several new functions for these proteins. The obtained results will allow us to specifically target individual aspects of the viral life cycle in order to develop new countermeasures against EBOV, but also to further investigate molecular details of these processes

    Der Einfluss der Phosphorylierung von Marburgvirus NP auf den viralen Lebenszyklus

    No full text
    Das Marburgvirus (MARV) bildet zusammen mit Ebolavirus (EBOV) und Lloviuvirus (LLOV) die Familie der Filoviridae und besitzt ein einzelsträngiges RNA-Genom negativer Orientierung. Filoviren werden als BSL-4-Pathogene klassifiziert, da sie schwere hämorrhagische Fieber bei Menschen und Affen verursachen. Das Nukleoprotein NP bildet zusammen mit den viralen Proteinen VP30, VP35, VP24 und der Polymerase L das Nukleokapsid, das die virale RNA umschließt. Frühere Studien haben gezeigt, dass NP an C-terminalen Serin- und Threoninresten phosphoryliert ist. Während in infizierten Zellen sowohl die phosphorylierte als auch die unphosphorylierte Form von NP nachgewiesen werden können, wird in neu gebildete Viruspartikel ausschließlich die phosphorylierte Form eingebaut, was auf eine Funktion der Phosphorylierung in der Bildung neuer Viruspartikel hinweist. Für NP wurden sieben Phosphorylierungsregionen beschrieben, wovon bisher eine (Phosphorylierungsregion II) näher funktionell charakterisiert wurde. In der vorliegenden Arbeit wurden die Phosphorylierungsregionen VI und VII genauer untersucht und die Funktion der Phosphorylierung der Serinreste in diesen Regionen charakterisiert. Mit Hilfe phosphomimetischer Mutanten konnte nachgewiesen werden, dass die Phos-phorylierung eines einzelnen Serinrests (S602) in Phosphorylierungsregion VI für die Konformationsänderung von NP ausreicht. Eine Phosphorylierung von NP an Position S602 bewirkt im Vergleich zur unphosphorylierten Form einen verbesserten Transport von den viralen inclusion bodies als den Orten viraler Replikation und Transkription zur Plasmamembran, womit bevorzugt phosphoryliertes NP zum Zusammenbau und zur Freisetzung neuer Viren zur Verfügung steht. Die Phosphorylierung vom einzigen Serinrest (S619) in Phosphorylierungsregion VII wurde ebenso mit phosphomimetischen Mutanten untersucht: Ist NP an Position S619 nicht phosphoryliert, so werden Replikation und/oder Transkription unterstützt, damit zur Freisetzung neuer Viren ausreichend virale Proteine und virale RNA zur Verfügung stehen. Für eine effiziente Interaktion mit dem weiteren Nukleokapsidprotein VP24 und damit die Bildung funktioneller Nukleokapside ist allerdings die Phosphorylierung von S619 essentiell. Die im Rahmen der vorliegenden Arbeit generierten Ergebnisse unterstreichen die Wichtigkeit der Phosphorylierung des Nukleoproteins für den viralen Replikationszyklus: Die dynamische Phosphorylierung verschiedener Aminosäuren führt zu einem breiten Spektrum verschiedener Funktionen von NP, die zu verschiedenen Zeitpunkten im Replikationszyklus von Bedeutung sind

    Characterization of Ebola Virus VP30 Phosphorylation with a Phosphospecific Antibody

    No full text
    Ebola virus is a nonsegmented negative-strand RNA virus of the family Filoviridae. Ebola virus is highly pathogenic and classified as a BSL-4 agent. In humans, the virus causes a severe, often fatal disease. Replication and transcription of the viral genome are achieved by viral proteins of the nucleocapsid complex, which consists of the viral RNA genome and the viral proteins NP, VP24, L, VP35, and VP30. For replication of the viral genome, only NP, VP35, and L are needed, whereas transcription of individual genes also requires a functional VP30. Previous studies indicated that extensive serine phosphorylation of VP30 impairs viral transcription. Here, we demonstrated that phosphorylation of two VP30 serine residues, namely serine 29 and 31, is both necessary and sufficient for downregulation of VP30's transcriptional support activity. Phosphorylation of VP30 also dynamically modulates the interaction with other viral proteins. For primary transcription immediately after infection of new cells, a phosphorylatable VP30 is a prerequisite. We were able to show that VP30 phosphorylation is essential at early time points of infection to ensure transport of VP30 with the incoming nucleocapsids to the site of primary viral transcription. With the help of a phosphospecific peptide VP30 antibody directed against serine 29 phosphorylation, we further demonstrated that the majority of VP30 is dephosphorylated at position 29 during infection with recombinant Ebola virus. By recombinantly expressing different combinations of viral proteins, we could show that other viral proteins, especially the nucleoprotein NP, decisively influence VP30 phosphorylation. We gathered first evidence showing that VP30 is a substrate of phosphatases recruited by NP into spatial proximity of VP30. Furthermore, we demonstrated that VP30 directly interacts with a so far unknown cellular kinase, which recognizes a common R-X-X-S phosphorylation motif for VP30 serine residue 29. On the basis of these interactions, both VP30-specific phosphatases and kinases are recruited to perinuclear viral inclusion bodies, where they modulate viral transcription and replication
    corecore