1,507 research outputs found
Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?
We examine the level of agreement between low redshift weak lensing data and
the CMB using measurements from the CFHTLenS and Planck+WMAP polarization. We
perform an independent analysis of the CFHTLenS six bin tomography results of
Heymans et al. (2013). We extend their systematics treatment and find the
cosmological constraints to be relatively robust to the choice of non-linear
modeling, extension to the intrinsic alignment model and inclusion of baryons.
We find that the 90% confidence contours of CFHTLenS and Planck+WP do not
overlap even in the full 6-dimensional parameter space of CDM, so the
two datasets are discrepant. Allowing a massive active neutrino or tensor modes
does not significantly resolve the disagreement in the full n-dimensional
parameter space. Our results differ from some in the literature because we use
the full tomographic information in the weak lensing data and marginalize over
systematics. We note that adding a sterile neutrino to CDM does bring
the 8-dimensional 64% contours to overlap, mainly due to the extra effective
number of neutrino species, which we find to be 0.84 0.35 (68%) greater
than standard on combining the datasets. We discuss why this is not a
completely satisfactory resolution, leaving open the possibility of other new
physics or observational systematics as contributing factors. We provide
updated cosmology fitting functions for the CFHTLenS constraints and discuss
the differences from ones used in the literature.Comment: 12 pages, 8 figures. We compare our findings with studies that
include other low redshift probes of structure. An interactive figure is
available at http://bit.ly/1oZH0KQ. This version is that accepted by MNRAS,
and so includes changes based on the referee's comments, and updates to the
analysis cod
The Dark Side of Galaxy Color: evidence from new SDSS measurements of galaxy clustering and lensing
The age matching model has recently been shown to predict correctly the
luminosity L and g-r color of galaxies residing within dark matter halos. The
central tenet of the model is intuitive: older halos tend to host galaxies with
older stellar populations. In this paper, we demonstrate that age matching also
correctly predicts the g-r color trends exhibited in a wide variety of
statistics of the galaxy distribution for stellar mass M* threshold samples. In
particular, we present new measurements of the galaxy two-point correlation
function and the galaxy-galaxy lensing signal as a function of M* and g-r color
from the Sloan Digital Sky Survey, and show that age matching exhibits
remarkable agreement with these and other statistics of low-redshift galaxies.
In so doing, we also demonstrate good agreement between the galaxy-galaxy
lensing observed by SDSS and the signal predicted by abundance matching, a new
success of this model. We describe how age matching is a specific example of a
larger class of Conditional Abundance Matching models (CAM), a theoretical
framework we introduce here for the first time. CAM provides a general
formalism to study correlations at fixed mass between any galaxy property and
any halo property. The striking success of our simple implementation of CAM
provides compelling evidence that this technique has the potential to describe
the same set of data as alternative models, but with a dramatic reduction in
the required number of parameters. CAM achieves this reduction by exploiting
the capability of contemporary N-body simulations to determine dark matter halo
properties other than mass alone, which distinguishes our model from
conventional approaches to the galaxy-halo connection.Comment: references added, minor adjustments to text and notatio
A Redefinition of the Halo Boundary Leads to a Simple yet Accurate Halo Model of Large Scale Structure
We present a model for the halo--mass correlation function that explicitly
incorporates halo exclusion. We assume that halos trace mass in a way that can
be described using a single scale-independent bias parameter. However, our
model exhibits scale dependent biasing due to the impact of halo-exclusion, the
use of a ``soft'' (i.e. not infinitely sharp) halo boundary, and differences in
the one halo term contributions to and . These
features naturally lead us to a redefinition of the halo boundary that lies at
the ``by eye'' transition radius from the one--halo to the two--halo term in
the halo--mass correlation function. When adopting our proposed definition, our
model succeeds in describing the halo--mass correlation function with residuals over the radial range , and for halo masses in the range . Our proposed halo boundary is related to the
splashback radius by a roughly constant multiplicative factor. Taking the
87-percentile as reference we find .
Surprisingly, our proposed definition results in halo abundances that are well
described by the Press-Schechter mass function with . The clustering bias parameter is offset from the standard
background-split prediction by . This level of agreement is
comparable to that achieved with more standard halo definitions.Comment: 12 pages, 5 figure
The Aemulus Project III: Emulation of the Galaxy Correlation Function
Using the N-body simulations of the AEMULUS Project, we construct an emulator
for the non-linear clustering of galaxies in real and redshift space. We
construct our model of galaxy bias using the halo occupation framework,
accounting for possible velocity bias. The model includes 15 parameters,
including both cosmological and galaxy bias parameters. We demonstrate that our
emulator achieves ~ 1% precision at the scales of interest, 0.1<r<10 h^{-1}
Mpc, and recovers the true cosmology when tested against independent
simulations. Our primary parameters of interest are related to the growth rate
of structure, f, and its degenerate combination fsigma_8. Using this emulator,
we show that the constraining power on these parameters monotonically increases
as smaller scales are included in the analysis, all the way down to 0.1 h^{-1}
Mpc. For a BOSS-like survey, the constraints on fsigma_8 from r<30 h^{-1} Mpc
scales alone are more than a factor of two tighter than those from the fiducial
BOSS analysis of redshift-space clustering using perturbation theory at larger
scales. The combination of real- and redshift-space clustering allows us to
break the degeneracy between f and sigma_8, yielding a 9% constraint on f alone
for a BOSS-like analysis. The current AEMULUS simulations limit this model to
surveys of massive galaxies. Future simulations will allow this framework to be
extended to all galaxy target types, including emission-line galaxies.Comment: 14 pages, 8 figures, 1 table; submitted to ApJ; the project webpage
is available at https://aemulusproject.github.io ; typo in Figure 7 and
caption updated, results unchange
The Aemulus Project I: Numerical Simulations for Precision Cosmology
The rapidly growing statistical precision of galaxy surveys has lead to a
need for ever-more precise predictions of the observables used to constrain
cosmological and galaxy formation models. The primary avenue through which such
predictions will be obtained is suites of numerical simulations. These
simulations must span the relevant model parameter spaces, be large enough to
obtain the precision demanded by upcoming data, and be thoroughly validated in
order to ensure accuracy. In this paper we present one such suite of
simulations, forming the basis for the AEMULUS Project, a collaboration devoted
to precision emulation of galaxy survey observables. We have run a set of 75
(1.05 h^-1 Gpc)^3 simulations with mass resolution and force softening of
3.51\times 10^10 (Omega_m / 0.3) ~ h^-1 M_sun and 20 ~ h^-1 kpc respectively in
47 different wCDM cosmologies spanning the range of parameter space allowed by
the combination of recent Cosmic Microwave Background, Baryon Acoustic
Oscillation and Type Ia Supernovae results. We present convergence tests of
several observables including spherical overdensity halo mass functions, galaxy
projected correlation functions, galaxy clustering in redshift space, and
matter and halo correlation functions and power spectra. We show that these
statistics are converged to 1% (2%) for halos with more than 500 (200)
particles respectively and scales of r>200 ~ h^-1 kpc in real space or k ~ 3 h
Mpc^-1 in harmonic space for z\le 1. We find that the dominant source of
uncertainty comes from varying the particle loading of the simulations. This
leads to large systematic errors for statistics using halos with fewer than 200
particles and scales smaller than k ~ 4 h^-1 Mpc. We provide the halo catalogs
and snapshots detailed in this work to the community at
https://AemulusProject.github.io.Comment: 16 pages, 12 figures, 3 Tables Project website:
https://aemulusproject.github.io
- …