11,900 research outputs found
Transmission needs across a fully renewable European power system
The residual load and excess power generation of 27 European countries with a
100% penetration of variable renewable energy sources are explored in order to
quantify the benefit of power transmission between countries. Estimates are
based on extensive weather data, which allows for modelling of hourly
mismatches between the demand and renewable generation from wind and solar
photovoltaics. For separated countries, balancing is required to cover around
24% of the total annual energy consumption. This number can be reduced down to
15% once all countries are networked together with uncon- strained
interconnectors. The reduction represents the maximum possible benefit of
transmission for the countries. The total Net Transfer Capacity of the
unconstrained interconnectors is roughly twelve times larger than current
values. However, constrained interconnector capacities six times larger than
the current values are found to provide 97% of the maximum possible benefit of
cooperation. This motivates a detailed investigation of several constrained
transmission capacity layouts to determine the export and import capabilities
of countries participating in a fully renewable European electricity system
Renewable build-up pathways for the US: Generation costs are not system costs
The transition to a future electricity system based primarily on wind and
solar PV is examined for all regions in the contiguous US. We present optimized
pathways for the build-up of wind and solar power for least backup energy needs
as well as for least cost obtained with a simplified, lightweight model based
on long-term high resolution weather-determined generation data. In the absence
of storage, the pathway which achieves the best match of generation and load,
thus resulting in the least backup energy requirements, generally favors a
combination of both technologies, with a wind/solar PV energy mix of about
80/20 in a fully renewable scenario. The least cost development is seen to
start with 100% of the technology with the lowest average generation costs
first, but with increasing renewable installations, economically unfavorable
excess generation pushes it toward the minimal backup pathway. Surplus
generation and the entailed costs can be reduced significantly by combining
wind and solar power, and/or absorbing excess generation, for example with
storage or transmission, or by coupling the electricity system to other energy
sectors.Comment: 11 pages, 6 figure
Embedded disposable functionalized electrochemical biosensor with a 3D-printed flow cell for detection of hepatic oval cells (HOCs)
Hepatic oval cells (HOCs) are considered the progeny of the intrahepatic stem cells that are found in a small population in the liver after hepatocyte proliferation is inhibited. Due to their small number, isolation and capture of these cells constitute a challenging task for immunosensor technology. This work describes the development of a 3D-printed continuous flow system and exploits disposable screen-printed electrodes for the rapid detection of HOCs that over-express the OV6 marker on their membrane. Multiwall carbon nanotube (MWCNT) electrodes have a chitosan film that serves as a scaffold for the immobilization of oval cell marker antibodies (anti-OV6-Ab), which enhance the sensitivity of the biomarker and makes the designed sensor specific for oval cells. The developed sensor can be easily embedded into the 3D-printed flow cell to allow cells to be exposed continuously to the functionalized surface. The continuous flow is intended to increase capture of most of the target cells in the specimen. Contact angle measurements were performed to characterize the nature and quality of the modified sensor surface, and electrochemical measurements (cyclic voltammetry (CV) and square wave voltammetry (SWV)) were performed to confirm the efficiency and selectivity of the fabricated sensor to detect HOCs. The proposed method is valuable for capturing rare cells and could provide an effective tool for cancer diagnosis and detection
Expansion and Collapse in the Cosmic Web
We study the kinematics of the gaseous cosmic web at high redshift with Lyman
alpha forest absorption in multiple QSO sightlines. Using a simple analytic
model and a cosmological hydrodynamic simulation we constrain the underlying
three-dimensional distribution of velocities from the observed line-of-sight
distribution of velocity shear across the plane of the sky. The distribution is
found to be in good agreement with the intergalactic medium (IGM) undergoing
large scale motions dominated by the Hubble flow. Modeling the Lyman alpha
clouds analytically and with a hydrodynamics simulation, the average expansion
velocity of the gaseous structures causing the Lyman alpha forest in the lower
redshift (z = 2) sample appears about 20 percent lower than the local Hubble
expansion velocity. We interpret this as tentative evidence for some clouds
undergoing gravitational collapse. However, the distribution of velocities is
highly skewed, and the majority of clouds at redshifts from 2 to 3.8 expand
typically about 5 - 20 percent faster than the Hubble flow. This behavior is
explained if most absorbers in the column density range typically detectable
are expanding filaments that stretch and drain into more massive nodes. We find
no evidence for the observed distribution of velocity shear being significantly
influenced by processes other than Hubble expansion and gravitational
instability, like galactic winds. To avoid overly disturbing the IGM, winds may
be old and/or limp by the time we observe them in the Lyman alpha forest, or
they may occupy only an insignificant volume fraction of the IGM. (abridged)Comment: 63 pages, 26 figures, AAS Latex; ApJ, in pres
Dissection of human papillomavirus type 33 L2 domains involved in nuclear domains (ND) 10 homing and reorganization
AbstractWe have recently shown that the minor capsid protein L2 of human papillomavirus type 33 (HPV33) recruits the transcriptional repressor Daxx into nuclear domains (ND) 10 and causes the loss of the transcriptional activator Sp100 from these subnuclear structures (Florin et al., 2002b). In order to dissect L2 domains involved in nuclear translocation, ND10 homing, loss of Sp100, and recruitment of Daxx, a detailed deletion mutagenesis of L2 was performed. Using immunofluorescence and green fluorescent protein fusions, we have identified two nuclear localization signals (NLS) in the central and C-terminal part of L2, respectively, homologous to previously identified NLS in HPV6B L2 (Sun et al., 1995). We mapped the ND10 localization domain to within a 30 amino acid peptide in the C-terminal half of L2. L2-induced attraction of Daxx into ND10, coimmunoprecipitation of L2 and Daxx, as well as induction of the loss of Sp100 from ND10 require an intact ND10 localization domain. This domain contains conserved PXXP motives characteristic of some protein/protein interacting domains. Our data also suggest that the Daxx/L2 interaction may be the driving force for L2 accumulation in ND10
Turtles From an Arkadelphia Formation—Midway Group Lag Deposit (Maastrichtian—Paleocene), Hot Spring County, Arkansas, USA
The Arkadelphia Formation—Midway Group (Maastrichtian—Paleocene) contact near Malvern, Arkansas preserves a K-Pg boundary assemblage of turtle species consisting of skull, shell, and non-shell postcranial skeletal elements. The Malvern turtles are preserved within a coquina lag deposit that comprises the basalmost Midway Group and also contains an abundance of other reptiles, as well as chondrichthyans, osteichthyans, and invertebrates. This coquina lag deposit records a complex taphonomic history of exhumation and reburial of vertebrate skeletal elements along a dynamic ancestral shoreline in southwestern Arkansas during the late Cretaceous-early Paleocene. Based on stratigraphic occurrence, the Malvern turtle assemblage indicates that these marine reptiles were living at or near the time of the K-Pg mass extinction and represent some of the latest Cretaceous turtles yet recovered from the Gulf Coastal Plain of the United States
Optical Pulse-Phased Photopolarimetry of PSR B0656+14
We have observed the optical pulse profile of PSR B0656+14 in 10 phase bins
at a high signal-to-noise ratio, and have measured the linear polarization
profile over 30% of the pulsar period with some significance. The pulse profile
is double-peaked, with a bridge of emission between the two peaks, similar to
gamma-ray profiles observed in other pulsars. There is no detectable unpulsed
flux, to a 1-sigma limit of 16% of the pulse-averaged flux. The emission in the
bridge is highly (~ 100%) polarized, with a position angle sweep in excellent
agreement with the prediction of the Rotating Vector Model as determined from
radio polarization observations. We are able to account for the gross features
of the optical light curve (i.e., the phase separation of the peaks) using both
polar cap and outer gap models. Using the polar cap model, we are also able to
estimate the height of the optical emission regions.Comment: 27 pages, 11 figures, accepted by ApJ (scheduled v597 n2, November
10, 2003
- …