10,584 research outputs found

    Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    Full text link
    The combination of density functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parameterization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ``extended Overhauser model''. The results of this work can be used to build self-interaction corrected short-range correlation energy functionals.Comment: revised version, to appear in Phys. Rev.

    Hybrid Quantum and Classical Mechanical Monte Carlo Simulations of the Interaction of Hydrogen Chloride with Solid Water Clusters

    Full text link
    Monte Carlo simulations using a hybrid quantum and classical mechanical potential were performed for crystal and amorphous-like HCl-water(n) clusters The subsystem composed by HCl and one water molecule was treated within Density Functional Theory, and a classical force field was used for the rest of the system. Simulations performed at 200 K suggest that the energetic feasibility of HCl dissociation strongly depends on its initial placement within the cluster. An important degree of ionization occurs only if HCl is incorporated into the surface. We observe that local melting does not play a crucial role in the ionization process.Comment: 14 Latex pages with 4 postscript figures, to appear in Chem. Phys. Let

    Electronic, vibrational and magnetic properties of a novel C_{48}N_{12} aza-fullerene

    Full text link
    We study the structural, electronic, vibrational and magnetic properties of a novel C48N12{\rm C}_{48}{\rm N}_{12} aza-fullerene using density functional theory and restricted Hartree-Fock theory. Optimized geometries and total energy of this fullerene have been calculated. We find that for C48N12{\rm C}_{48}{\rm N}_{12} the total ground state energy is about -67617 eV, the HOMO-LUMO gap is about 1.9 eV, five strong IR spectral lines are located at the vibrational frequencies, 461.5 cm1{\rm cm}^{-1}, 568.4 cm1{\rm cm}^{-1}, 579.3 cm1{\rm cm}^{-1}, 1236.1 cm1{\rm cm}^{-1}, 1338.9 cm1{\rm cm}^{-1}, the Raman scattering activities and depolarization ratios are zero, and 10 NMR spectral signals are predicted. Calculations of diamagnetic shielding factor, static dipole polarizabilities and hyperpolarizabilities of C48N12{\rm C}_{48}{\rm N}_{12} are performed and discussed.Comment: published in Chem.Phys.Let

    Spin Resolution of the Electron-Gas Correlation Energy: Positive same-spin contribution

    Full text link
    The negative correlation energy per particle of a uniform electron gas of density parameter rsr_s and spin polarization ζ\zeta is well known, but its spin resolution into up-down, up-up, and down-down contributions is not. Widely-used estimates are incorrect, and hamper the development of reliable density functionals and pair distribution functions. For the spin resolution, we present interpolations between high- and low-density limits that agree with available Quantum Monte Carlo data. In the low-density limit for ζ=0\zeta = 0, we find that the same-spin correlation energy is unexpectedly positive, and we explain why. We also estimate the up and down contributions to the kinetic energy of correlation.Comment: new version, to appear in PRB Rapid Communicatio

    Performance of the modified Becke-Johnson potential

    Full text link
    Very recently, in the 2011 version of the Wien2K code, the long standing shortcome of the codes based on Density Functional Theory, namely, its impossibility to account for the experimental band gap value of semiconductors, was overcome. The novelty is the introduction of a new exchange and correlation potential, the modified Becke-Johnson potential (mBJLDA). In this paper, we report our detailed analysis of this recent work. We calculated using this code, the band structure of forty one semiconductors and found an important improvement in the overall agreement with experiment as Tran and Blaha [{\em Phys. Rev. Lett.} 102, 226401 (2009)] did before for a more reduced set of semiconductors. We find, nevertheless, within this enhanced set, that the deviation from the experimental gap value can reach even much more than 20%, in some cases. Furthermore, since there is no exchange and correlation energy term from which the mBJLDA potential can be deduced, a direct optimization procedure to get the lattice parameter in a consistent way is not possible as in the usual theory. These authors suggest that a LDA or a GGA optimization procedure is used previous to a band structure calculation and the resulting lattice parameter introduced into the 2011 code. This choice is important since small percentage differences in the lattice parameter can give rise to quite higher percentage deviations from experiment in the predicted band gap value.Comment: 10 pages, 2 figures, 5 Table

    Edge Electron Gas

    Full text link
    The uniform electron gas, the traditional starting point for density-based many-body theories of inhomogeneous systems, is inappropriate near electronic edges. In its place we put forward the appropriate concept of the edge electron gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in title,text and figure

    Long-range/short-range separation of the electron-electron interaction in density functional theory

    Full text link
    By splitting the Coulomb interaction into long-range and short-range components, we decompose the energy of a quantum electronic system into long-range and short-range contributions. We show that the long-range part of the energy can be efficiently calculated by traditional wave function methods, while the short-range part can be handled by a density functional. The analysis of this functional with respect to the range of the associated interaction reveals that, in the limit of a very short-range interaction, the short-range exchange-correlation energy can be expressed as a simple local functional of the on-top pair density and its first derivatives. This provides an explanation for the accuracy of the local density approximation (LDA) for the short-range functional. Moreover, this analysis leads also to new simple approximations for the short-range exchange and correlation energies improving the LDA.Comment: 18 pages, 14 figures, to be published in Phys. Rev.

    2,4-Dichloro-1-[1-(2,4-dichloro­benz­yl­oxy)eth­yl]benzene

    Get PDF
    In the title compound, C15H12Cl4O, the dihedral angle between the least-squares planes of the two benzene rings is 82.6 (9)°. The dihedral angles between the COC mean plane of the ­oxy group and the two benzene rings are 84.3 (5) and 10.8 (5)°. In the crystal, two weak π–π inter­actions [centroid–centroid distances = 3.9989 (8) and 3.7912 (8) Å] and a C—H⋯π inter­action are observed

    First-Principles Calculations of Hyperfine Interactions in La_2CuO_4

    Full text link
    We present the results of first-principles cluster calculations of the electronic structure of La_2CuO_4. Several clusters containing up to nine copper atoms embedded in a background potential were investigated. Spin-polarized calculations were performed both at the Hartree-Fock level and with density functional methods with generalized gradient corrections to the local density approximation. The distinct results for the electronic structure obtained with these two methods are discussed. The dependence of the electric-field gradients at the Cu and the O sites on the cluster size is studied and the results are compared to experiments. The magnetic hyperfine coupling parameters are carefully examined. Special attention is given to a quantitative determination of on-site and transferred hyperfine fields. We provide a detailed analysis that compares the hyperfine fields obtained for various cluster sizes with results from additional calculations of spin states with different multiplicities. From this we conclude that hyperfine couplings are mainly transferred from nearest neighbor Cu^{2+} ions and that contributions from further distant neighbors are marginal. The mechanisms giving rise to transfer of spin density are worked out. Assuming conventional values for the spin-orbit coupling, the total calculated hyperfine interaction parameters are compared to informations from experiments.Comment: 23 pages, 9 figure

    Rearrangement of cluster structure during fission processes

    Full text link
    Results of molecular dynamics simulations of fission reactions Na102+Na7++Na3+Na_{10}^{2+} \to Na_7^+ + Na_3^+ and Na182+2Na9+Na_{18}^{2+} \to 2 Na_9^+ are presented. Dependence of the fission barriers on isomer structure of the parent cluster is analyzed. It is demonstrated that the energy necessary for removing homothetic groups of atoms from the parent cluster is largely independent of the isomer form of the parent cluster. Importance of rearrangement of the cluster structure during the fission process is elucidated. This rearrangement may include transition to another isomer state of the parent cluster before actual separation of the daughter fragments begins and/or forming a "neck" between the separating fragments
    corecore