29,086 research outputs found
The CF6 Jet Engine Performance Improvement - Low Pressure Turbine Active Clearance Control
A low pressure turbine (LPT) active clearance control (ACC) cooling system was developed to reduce the fuel consumption of current CF6-50 turbofan engines for wide bodied commercial aircraft. The program performance improvement goal of 0.3% delta sfc was determined to be achievable with an improved impingement cooling system. The technology enables the design of an optimized manifold and piping system which is capable of a performance gain of 0.45% delta sfc
Geometry and supersymmetry of heterotic warped flux AdS backgrounds
We classify the geometries of the most general warped, flux AdS backgrounds
of heterotic supergravity up to two loop order in sigma model perturbation
theory. We show under some mild assumptions that there are no
backgrounds with . Moreover the warp factor of AdS backgrounds is
constant, the geometry is a product and such solutions
preserve, 2, 4, 6 and 8 supersymmetries. The geometry of has been
specified in all cases. For 2 supersymmetries, it has been found that
admits a suitably restricted structure. For 4 supersymmetries, has
an structure and can be described locally as a circle fibration over a
6-dimensional KT manifold. For 6 and 8 supersymmetries, has an
structure and can be described locally as a fibration over a
4-dimensional manifold which either has an anti-self dual Weyl tensor or a
hyper-K\"ahler structure, respectively. We also demonstrate a new Lichnerowicz
type theorem in the presence of corrections.Comment: 34 pages. Reference adde
Polarization and Charge Transfer in the Hydration of Chloride Ions
A theoretical study of the structural and electronic properties of the
chloride ion and water molecules in the first hydration shell is presented. The
calculations are performed on an ensemble of configurations obtained from
molecular dynamics simulations of a single chloride ion in bulk water. The
simulations utilize the polarizable AMOEBA force field for trajectory
generation, and MP2-level calculations are performed to examine the electronic
structure properties of the ions and surrounding waters in the external field
of more distant waters. The ChelpG method is employed to explore the effective
charges and dipoles on the chloride ions and first-shell waters. The Quantum
Theory of Atoms in Molecules (QTAIM) is further utilized to examine charge
transfer from the anion to surrounding water molecules.
From the QTAIM analysis, 0.2 elementary charges are transferred from the ion
to the first-shell water molecules. The default AMOEBA model overestimates the
average dipole moment magnitude of the ion compared with the estimated quantum
mechanical value. The average magnitude of the dipole moment of the water
molecules in the first shell treated at the MP2 level, with the more distant
waters handled with an AMOEBA effective charge model, is 2.67 D. This value is
close to the AMOEBA result for first-shell waters (2.72 D) and is slightly
reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment
of the water molecules in the first solvation shell is most strongly affected
by the local water-water interactions and hydrogen bonds with the second
solvation shell, rather than by interactions with the ion.Comment: Slight revision, in press at J. Chem. Phy
Integrated technology wing design study
The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs
Underground nuclear power plant siting
This study is part of a larger evaluation of the problems associated with siting nuclear power plants in the next few decades. This evaluation is being undertaken by the Environmental Quality Laboratory of the California Institute of Technology in conjunction with The Aerospace Corporation and several other organizations. Current efforts are directed toward novel approaches to siting plants within the State of California. This report contains the results of efforts performed by The Aerospace Corporation to provide input information to the larger evaluation relative to underground siting of large central station nuclear power plants.
Projections of electric power demand in California and the country as a whole suggest that a major increase in generating capacity will be required. The problem is complicated beyond that of a large but straightforward extension of capital investment by increased emphasis on environmental factors combined with the early stage of commercial application and regulation of nuclear power sources. Hydroelectric power generation is limited by the availability of suitable sites, and fossil fueled plants are constrained by the availability of high quality fuels and the adverse environmental and/or economic impact from the use of more plentiful fuels. A substantial increase in the number of nuclear power plants is now under way. This source of power is expected to provide the maj or portion of increased capacity. Other power sources such as geothermal and nuclear fusion are unlikely to satisfy the national needs due to technical problems and the lack of a comprehensive development program.
There are several problems associated with meeting the projected power demand. Chief among these is the location of acceptable and economic plant sites. Indeed a sufficient number of sites may not be found unless changes occur in the procedures for selecting sites, the criteria for accepting sites, or the type of site required. Placement of a nuclear plant underground has been suggested as an alternative to present siting practices. It is postulated that the advantages of underground siting in some situations may more than compensate for added costs so that such facilities could be preferred even where surface sites are available. By virtue of greater safety, reduced surface area requirements, and improved aesthetics, underground sites might also be found where acceptable surface sites are not available.
Four small European reactors have been constructed partially underground but plans for large size commercial plants have not progressed. Consequently, the features of underground power plant siting are not well understood. Gross physical features such as depth of burial, number and size of excavated galleries, equipment layout, and access or exit shafts/tunnels must be specified. Structural design features of the gallery liners, containment structure, foundations, and gallery interconnections must also be identified. Identification of the nuclear, electrical, and support equipment appropriate to underground operation is needed. Operational features must be defined for normal operations, refueling, and construction. Several magazine articles have been published addressing underground concepts. but adequate engineering data is not available to support an evaluation of the underground concept.
There also remain several unresolved questions relative to the advantages of underground siting as well as the costs and other possible penalties associated with this novel approach to siting. These include the degree of increased safety through improved containment; the extent and value of isolation from falling objects, e. g. aircraft; the value of isolation from surface storms and tidal waves; the value of protection from vandalism or sabotage; the extent by which siting constraints are relieved through reduced population-distance requirements or aggravated by underground construction requirements; and the value to be placed upon the aesthetic differences of a less visible facility.
The study described in this report has been directed toward some of these questions and uncertainties. Within the study an effort has been made to identify viable configurations and structural liners for typical light water reactor nuclear power plants. Three configurations are summarized in Section 3. A discussion of the underground gallery liner design and associated structural analyses is presented in Section 4. Also addressed in the study and discussed in Section 5 are some aspects of containment for underground plants. There it is suggested that the need for large separations between the plant and population centers may be significantly reduced, or perhaps eliminated.
Section 6 contains a brief discussion of operational considerations for underground plants. The costs associated with excavation and lining of the underground galleries have been estimated in Section 7. These estimates include an assessment of variations implied by different seismic loading assumptions and differences in geologic media. It is shown that these costs are a small percentage of the total cost of comparable surface plants. Finally, the parameters characterizing an acceptable underground site are discussed in Section 8. Material is also included in the appendices pertaining to foreign underground plants, span limits of underground excavations, potential siting areas for underground plants in the State of California, pertinent data from the Underground Nuclear Test Program, and other supporting technical discussions
The population of deformed bands in Cr by emission of Be from the S + Mg reaction
Using particle- coincidences we have studied the population of final
states after the emission of 2 -particles and of Be in nuclei
formed in S+Mg reactions at an energy of . The data were obtained in a setup
consisting of the GASP -ray detection array and the multidetector array
ISIS. Particle identification is obtained from the E and E signals of
the ISIS silicon detector telescopes, the Be being identified by the
instantaneous pile up of the E and E pulses. -ray decays of the
Cr nucleus are identified with coincidences set on 2 -particles
and on Be. Some transitions of the side-band with show
stronger population for Be emission relative to that of 2
-particles (by a factor ). This observation is interpreted as
due to an enhanced emission of Be into a more deformed nucleus.
Calculations based on the extended Hauser-Feshbach compound decay formalism
confirm this observation quantitatively.Comment: 17 pages, 9 figures accepted for publication in J. Phys.
Conceptual Clustering in Database Systems
Classes are an integral part of all semantic data models. Despite this, class formation in these data models is ad hoc due to the varied treatment of classes and because the issue of grouping instances into classes is considered an art rather than a science. It is the view of this paper that class formation be based on category theory through the use of an aJtribute-based purpose-dieected conceptual clustering technique. Several issues concerned with category theory, especially exception handling, are discussed. The emphasis in this approach is on reasoning at the instance level. Schema generation occurs as a result of conceptually clustering the underlying data instances and guiding this process by specifying a context in the form of a clustering seed. The use of this approach in the areas of schema integration, schema evolution and querying will be discussed. These facilities have been implemented on a database system based on the CANDIDE [3] semantic data model. CANDIDE is essentially an extended version of the tenn-subsumption languages known as the KL-ONE family of languages
Extraction of mycelial protein: some specific comparisons
Extraction of mycelial protei
Measurement of transparency ratios for protons from short-range correlated pairs
Nuclear transparency, Tp(A), is a measure of the average probability for a
struck proton to escape the nucleus without significant re-interaction.
Previously, nuclear transparencies were extructed for quasi-elastic A(e,e'p)
knockout of protons with momentum below the Fermi momentum, where the spectral
functions are well known. In this paper we extract a novel observable, the
transparency ratio, Tp(A)/T_p(12C), for knockout of high-missing-momentum
protons from the breakup of short range correlated pairs (2N-SRC) in Al, Fe and
Pb nuclei relative to C. The ratios were measured at momentum transfer Q^2 >
1.5 (GeV/c)^2 and x_B > 1.2 where the reaction is expected to be dominated by
electron scattering from 2N-SRC. The transparency ratios of the knocked-out
protons coming from 2N-SRC breakup are 20 - 30% lower than those of previous
results for low missing momentum. They agree with Glauber calculations and
agree with renormalization of the previously published transparencies as
proposed by recent theoretical investigations. The new transparencies scale as
A^-1/3, which is consistent with dominance of scattering from nucleons at the
nuclear surface.Comment: 6 pages, 4 figure
Pattern languages in HCI: A critical review
This article presents a critical review of patterns and pattern languages in human-computer interaction (HCI). In recent years, patterns and pattern languages have received considerable attention in HCI for their potential as a means for developing and communicating information and knowledge to support good design. This review examines the background to patterns and pattern languages in HCI, and seeks to locate pattern languages in relation to other approaches to interaction design. The review explores four key issues: What is a pattern? What is a pattern language? How are patterns and pattern languages used? and How are values reflected in the pattern-based approach to design? Following on from the review, a future research agenda is proposed for patterns and pattern languages in HCI
- …