32,348 research outputs found
Thermodynamic fluctuations in solar photospheric three-dimensional convection simulations and observations
Numerical 3D radiative (M)HD simulations of solar convection are used to
understand the physical properties of the solar photosphere. To validate this
approach, it is important to check that no excessive thermodynamic fluctuations
arise as a consequence of the partially incomplete treatment of radiative
transfer. We investigate the realism of 3D convection simulations carried out
with the Stagger code. We compared the characteristic properties of several
spectral lines in solar disc centre observations with spectra synthesized from
the simulations. We degraded the synthetic spectra to the spatial resolution of
the observations using the continuum intensity distribution. We estimated the
necessary spectral degradation by comparing atlas spectra with averaged
observed spectra. In addition to deriving a set of line parameters directly, we
used the SIR code to invert the spectra. Most of the line parameters from the
observational data are matched well by the degraded simulation spectra. The
inversions predict a macroturbulent velocity below 10 m/s for the simulation at
full spatial resolution, whereas they yield ~< 1000 m/s at a spatial resolution
of 0.3". The temperature fluctuations in the inversion of the degraded
simulation do not exceed those from the observational data (of the order of
100-200 K rms for -2<log tau<-0.5). The comparison of line parameters in
spatially averaged profiles with the averaged values of line parameters in
spatially resolved profiles indicates a significant change of (average) line
properties at a spatial scale between 0.13" and 0.3". Up to a spatial
resolution of 0.3", we find no indications of the presence of excessive
thermodynamic fluctuations in the 3D HD simulation. To definitely confirm that
simulations without spatial degradation contain fully realistic thermodynamic
fluctuations requires observations at even better spatial resolution.Comment: 21 pages, 15 figures + 2 pages Appendix, accepted for publication in
A&A; v2 version: corrected for an error in the calculation of stray-light
estimates, for details see the Corrigendum to A&A, 2013, 557, 109 (DOI:
10.1051/0004-6361/201321596). Corrected text and numbers are in bold font.
Apart from the stray-light estimates, nothing in the rest of the paper was
affected by the erro
Estimation of Costs of Phosphorus Removal In Wastewater Treatment Facilities: Adaptation of Existing Facilities
As part of a wider enquiry into the feasibility of offset banking schemes as a means to implement pollutant trading within Georgia watersheds, this is the second of two reports addressing the issue of estimating costs for upgrades in the performance of phosphorus removal in point-source wastewater treatment facilities. Earlier, preliminary results are presented in Jiang et al (2004) (Working Paper # 2004-010 of the Georgia Water Planning and Policy Center). The present study is much more detailed and employs an advanced software package (WEST®, Hemmis nv, Kortrijk, Belgium) for simulating a variety of treatment plant designs operating under typical Georgia conditions. Specifically, upgrades in performance, in a single step, from a plant working at an effluent limit of less than 2.0 mg/l phosphorus to one working with limits variously ranging between less than 1.0 mg/l to less than 0.05 mg/l phosphorus are simulated and the resulting costs of the upgrade estimated.Five capacities of plant are considered, from 1 MGD to 100 MGD. Three strategic, alternative designs for the facility are considered: the basic activated sludge (AS) process with chemical addition, the Anoxic/Oxic (A/O) arrangement of the AS process, and the Anaerobic/Aerobic/Oxic (A/A/O) arrangement of the AS process. Upgrades in performance are consistent with the logical alternatives for adapting these options. Cost comparisons are made primarily on the basis of the incremental cost of the upgrade, i.e., from the base-case, reference plant to that performing at the higher level, as expressed through the incremental Total Annual Economic Cost (TAEC; in /kg).For the most stringent upgrade, for example, to a plant generating an effluent with less than 0.05 mg/l phosphorus, these marginal costs -- the cost of the additional phosphorus removed as a result of the upgrade -- amount to something of the order of 150-425 $/kg, with the upper bound being associated with the smallest plant configuration (1 MGD). Working Paper Number 2005-001
Stress corrosion cracking of titanium alloys
The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn
The Local Radio-IR Relation in M51
We observed M51 at three frequencies, 1.4 GHz (20 cm), 4.9 GHz (6 cm), and 8.4 GHz (3.6 cm), with the Very Large Array and the Effelsberg 100 m telescope to obtain the highest quality radio continuum images of a nearby spiral galaxy. These radio data were combined with deconvolved Spitzer IRAC 8 μm and MIPS 24 μm images to search for and investigate local changes in the radio-IR correlation. Utilizing wavelet decomposition, we compare the distribution of the radio and IR emission on spatial scales between 200 pc and 30 kpc. We show that the radio-IR correlation is not uniform across the galactic disk. It presents a complex behavior with local extrema corresponding to various galactic structures, such as complexes of H II regions, spiral arms, and interarm filaments, indicating that the contribution of the thermal and non-thermal radio emission is a strong function of environment. In particular, the relation of the 24 μm and 20 cm emission presents a linear relation within the spiral arms and globally over the galaxy, while it deviates from linearity in the interarm and outer regions as well in the inner region, with two different behaviors: it is sublinear in the interarm and outer region and overlinear in the central 3.5 kpc. Our analysis suggests that the changes in the radio/IR correlation reflect variations of interstellar medium properties between spiral arms and interarm region. The good correlation in the spiral arms implies that 24 μm and 20 cm are tracing recent star formation, while a change in the dust opacity, "Cirrus" contribution to the IR emission and/or the relation between the magnetic field strength and the gas density can explain the different relations found in the interarm, outer, and inner regions
Sensitivity to initial conditions at bifurcations in one-dimensional nonlinear maps: rigorous nonextensive solutions
Using the Feigenbaum renormalization group (RG) transformation we work out
exactly the dynamics and the sensitivity to initial conditions for unimodal
maps of nonlinearity at both their pitchfork and tangent
bifurcations. These functions have the form of -exponentials as proposed in
Tsallis' generalization of statistical mechanics. We determine the -indices
that characterize these universality classes and perform for the first time the
calculation of the -generalized Lyapunov coefficient . The
pitchfork and the left-hand side of the tangent bifurcations display weak
insensitivity to initial conditions, while the right-hand side of the tangent
bifurcations presents a `super-strong' (faster than exponential) sensitivity to
initial conditions. We corroborate our analytical results with {\em a priori}
numerical calculations.Comment: latex, 4 figures. Updated references and some general presentation
improvements. To appear published in Europhysics Letter
Brief Studies
Public Schools and Religion
1 Corinthians 7:36-3
- …