2,600 research outputs found

    Performance documentation of the engineering model 30-cm diameter thruster

    Get PDF
    The results of extensive testing of two 30-cm ion thrusters which are virtually identical to the 900 series Engineering Model Thruster in an ongoing 15,000-hour life test are presented. Performance data for the nominal fullpower (2650 W) operating point; performance sensitivities to discharge voltage, discharge losses, accelerator voltage, and magnetic baffle current; and several power throttling techniques (maximum Isp, maximum thrust/power ratio, and two cases in between are included). Criteria for throttling are specified in terms of the screen power supply envelope, thruster operating limits, and control stability. In addition, reduced requirements for successful high voltage recycles are presented

    An Assessment of Integrated Flywheel System Technology

    Get PDF
    The current state of the technology in flywheel storage systems and ancillary components, the technology in light of future requirements, and technology development needs to rectify these shortfalls were identified. Technology efforts conducted in Europe and in the United States were reviewed. Results of developments in composite material rotors, magnetic suspension systems, motor/generators and electronics, and system dynamics and control were presented. The technology issues for the various disciplines and technology enhancement scenarios are discussed. A summary of the workshop, and conclusions and recommendations are presented

    A 1000 hour endurance test of a glass-coated accelerator grid on a 15-centimeter-diameter Kaufman thruster

    Get PDF
    Endurance test of glass coated accelerator grid on 15-centimeter-diameter Kaufman thruste

    Structural analysis demonstration of constitutive and life models

    Get PDF
    The overall objective of this program is to demonstrate the applicability of NASA-developed advanced constitutive and life damage models for calculating cyclic structural response and crack initiation in selected components of reusable space propulsion systems. The computer model resulting from this program will enable the user to produce an accurate life prediction of hot gas path, life limiting components of propulsion systems such as the space shuttle main engine (SSME). Previously developed computer models addressing constitutive modeling and life damage will be combined in an advanced finite element analysis to generate a sophisticated baseline life prediction program. A material data base will be established for the constitutive and life models parametrically involving temperature, strain range, strain rate, mean strain/stress, and dwell time. The verified computer program will be used to accomplish the life predictions of three SSME critical components as evidence of the model functionality
    corecore