719 research outputs found

    Optimal dimensionality for quantum cryptography

    Get PDF
    We perform a comparison of two protocols for generating a cryptographic key composed from d-valued symbols: one exploiting a string of independent qubits and another one utilizing d-level systems prepared in states belonging to d+1 mutually unbiased bases. We show that the protocol based on qubits is optimal for quantum cryptography, since it provides higher security and higher key generation rate.Comment: Revtex, 4 pages, 1 eps figur

    Aspects of mutually unbiased bases in odd prime power dimensions

    Get PDF
    We rephrase the Wootters-Fields construction [Ann. Phys., {\bf 191}, 363 (1989)] of a full set of mutually unbiased bases in a complex vector space of dimensions N=prN=p^r, where pp is an odd prime, in terms of the character vectors of the cyclic group GG of order pp. This form may be useful in explicitly writing down mutually unbiased bases for N=prN=p^r.Comment: 3 pages, latex, no figure

    The effectiveness of quantum operations for eavesdropping on sealed messages

    Full text link
    A quantum protocol is described which enables a user to send sealed messages and that allows for the detection of active eavesdroppers. We examine a class of eavesdropping strategies, those that make use of quantum operations, and we determine the information gain versus disturbance caused by these strategies. We demonstrate this tradeoff with an example and we compare this protocol to quantum key distribution, quantum direct communication, and quantum seal protocols.Comment: 10 pages, 2 figures. Third Feynman Festival, 25 -- 29 August 2006, University of Maryland, College Park, Maryland, U.S.

    Quantum Key Distribution between N partners: optimal eavesdropping and Bell's inequalities

    Get PDF
    Quantum secret-sharing protocols involving N partners (NQSS) are key distribution protocols in which Alice encodes her key into N1N-1 qubits, in such a way that all the other partners must cooperate in order to retrieve the key. On these protocols, several eavesdropping scenarios are possible: some partners may want to reconstruct the key without the help of the other ones, and consequently collaborate with an Eve that eavesdrops on the other partners' channels. For each of these scenarios, we give the optimal individual attack that the Eve can perform. In case of such an optimal attack, the authorized partners have a higher information on the key than the unauthorized ones if and only if they can violate a Bell's inequality.Comment: 14 pages, 1 figur

    Laser Additive Manufacturing of Gas Permeable Structures

    Get PDF
    Laser additive manufacturing offers a variety of new design possibilities. In mold making laser additive manufactured inserts with conformal cooling channels are already state of the art. Pneumatic ejectors for injection molds are a new application for laser additive manufacturing. The pneumatic ejectors require a durable gas permeable material. This material is produced by placing the scan vectors for the laser additive manufacturing process in a defined pattern. Trials with different plastics proofed the function and reliability of the pneumatic ejector concept in the injection molding cycle

    On Preparing Entangled Pairs of Polarization Qubits in the Frequency Non-Degenerate Regime

    Full text link
    The problems associated with practical implementation of the scheme proposed for preparation of arbitrary states of polarization ququarts based on biphotons are discussed. The influence of frequency dispersion effects are considered, and the necessity of group velocities dispersion compensation in the frequency non-degenerate case even for continuous pumping is demonstrated. A method for this compensation is proposed and implemented experimentally. Physical restrictions on the quality of prepared two-photon states are revealed.Comment: 9 pages, 6 figure

    Optimal eavesdropping in cryptography with three-dimensional quantum states

    Full text link
    We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.Comment: 4 pages, 2 figure

    Orthogonality of Biphoton Polarization States

    Full text link
    Orthogonality of two-photon polarization states belonging to a single frequency and spatial mode is demonstrated experimentally, in a generalization of the well-known anti-correlation 'dip' experiment.Comment: Submitted to Phys.Rev.Let
    corecore