2,957 research outputs found
Quality of life and well-being of carers of people with dementia: are there differences between working and nonworking carers? Results from the IDEAL program
The aim of this study was to identify the differences in quality of life (QoL) and well-being between working and nonworking dementia carers and the relative contribution of psychological characteristics, caregiving experience, and social support. Multiple regressions modeled the contribution of working status, caregiver experiences, and psychological and social resources to carer QoL (EQ-5D) and well-being (WHO-5). After controlling for age, gender, carer–dyad relationship, and severity of dementia, working status contributed significant variance to EQ-5D (2%) but not to WHO-5 scores. Independent of working status, higher self-esteem and reduced stress contributed to variance in both models. Self-efficacy, social support, and positive perceptions of caregiving additionally contributed to higher WHO-5 scores. Working status associated with higher EQ-5D QoL; this may reflect the sustained sense of independence associated with supported work opportunities for carers. Outside of working status, the findings support the importance of psychological and social factors as targets to improved mental health for dementia carers
Source Coding in Networks with Covariance Distortion Constraints
We consider a source coding problem with a network scenario in mind, and
formulate it as a remote vector Gaussian Wyner-Ziv problem under covariance
matrix distortions. We define a notion of minimum for two positive-definite
matrices based on which we derive an explicit formula for the rate-distortion
function (RDF). We then study the special cases and applications of this
result. We show that two well-studied source coding problems, i.e. remote
vector Gaussian Wyner-Ziv problems with mean-squared error and mutual
information constraints are in fact special cases of our results. Finally, we
apply our results to a joint source coding and denoising problem. We consider a
network with a centralized topology and a given weighted sum-rate constraint,
where the received signals at the center are to be fused to maximize the output
SNR while enforcing no linear distortion. We show that one can design the
distortion matrices at the nodes in order to maximize the output SNR at the
fusion center. We thereby bridge between denoising and source coding within
this setup
Statistical analysis and modelling of weather radar beam propagation conditions in the Po Valley (Italy)
Ground clutter caused by anomalous propagation (anaprop) can affect seriously radar rain rate estimates, particularly in fully automatic radar processing systems, and, if not filtered, can produce frequent false alarms. A statistical study of anomalous propagation detected from two operational C-band radars in the northern Italian region of Emilia Romagna is discussed, paying particular attention to its diurnal and seasonal variability. The analysis shows a high incidence of anaprop in summer, mainly in the morning and evening, due to the humid and hot summer climate of the Po Valley, particularly in the coastal zone. Thereafter, a comparison between different techniques and datasets to retrieve the vertical profile of the refractive index gradient in the boundary layer is also presented. In particular, their capability to detect anomalous propagation conditions is compared. Furthermore, beam path trajectories are simulated using a multilayer ray-tracing model and the influence of the propagation conditions on the beam trajectory and shape is examined. High resolution radiosounding data are identified as the best available dataset to reproduce accurately the local propagation conditions, while lower resolution standard TEMP data suffers from interpolation degradation and Numerical Weather Prediction model data (Lokal Model) are able to retrieve a tendency to superrefraction but not to detect ducting conditions. Observing the ray tracing of the centre, lower and upper limits of the radar antenna 3-dB half-power main beam lobe it is concluded that ducting layers produce a change in the measured volume and in the power distribution that can lead to an additional error in the reflectivity estimate and, subsequently, in the estimated rainfall rate
Effects of an electromagnetic shield and armature teeth on the short-circuit performance of a direct drive superconducting generator for 10 MW wind turbines
On the Phenomenology of Hydrodynamic Shear Turbulence
The question of a purely hydrodynamic origin of turbulence in accretion disks
is reexamined, on the basis of a large body of experimental and numerical
evidence on various subcritical (i.e., linearly stable) hydrodynamic flows.
One of the main points of this paper is that the length scale and velocity
fluctuation amplitude which are characteristic of turbulent transport in these
flows scale like , where is the minimal Reynolds number for
the onset of fully developed turbulence. From this scaling, a simple
explanation of the dependence of with relative gap width in subcritical
Couette-Taylor flows is developed. It is also argued that flows in the shearing
sheet limit should be turbulent, and that the lack of turbulence in all such
simulations performed to date is most likely due to a lack of resolution, as a
consequence of the effect of the Coriolis force on the large scale fluctuations
of turbulent flows.
These results imply that accretion flows should be turbulent through
hydrodynamic processes. If this is the case, the Shakura-Sunyaev
parameter is constrained to lie in the range in accretion
disks, depending on unknown features of the mechanism which sustains
turbulence. Whether the hydrodynamic source of turbulence is more efficient
than the MHD one where present is an open question.Comment: 31 pages, 3 figures. Accepted for publication in Ap
Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4
We study spin liquid in the frustrated diamond lattice antiferromagnet
CoAl2O4 by means of single crystal neutron scattering in zero and applied
magnetic field. The magnetically ordered phase appearing below TN=8 K remains
nonconventional down to 1.5 K. The magnetic Bragg peaks at the q=0 positions
remain broad and their profiles have strong Lorentzian contribution.
Additionally, they are connected by weak diffuse streaks along the
directions. These observations are explained within the spiral spin liquid
model as short-range magnetic correlations of spirals populated at these finite
temperatures, as the energy minimum around q=0 is flat and the energy of
excited states with q=(111) is low. The agreement is only qualitative, leading
us to suspect that microstructure effects are also important. Magnetic field
significantly perturbs spin correlations. The 1.5 K static magnetic moment
increases from 1.58 mB/Co at zero field to 2.08 mB/Co at 10 T, while the
magnetic peaks, being still broad, acquire almost Gaussian profile. Spin
excitations are rather conventional spin waves at zero field, resulting in the
exchange parameters J1=0.92(1) meV, J2=0.101(2) meV and the anisotropy term
D=-0.0089(2) meV for CoAl2O4. The application of a magnetic field leads to a
pronounced broadening of the excitations at the zone center, which at 10 T
appear gapless and nearly featureless
- …
