13 research outputs found

    Renal Artery Stenting in Consecutive High-Risk Patients With Atherosclerotic Renovascular Disease:A Prospective 2-Center Cohort Study

    Get PDF
    BACKGROUND: The aim of this study was to prospectively evaluate the effects of renal artery stenting in consecutive patients with severe atherosclerotic renal artery stenosis and high‐risk clinical presentations as defined in a national protocol developed in 2015. METHODS AND RESULTS: Since the protocol was initiated, 102 patients have been referred for revascularization according to the following high‐risk criteria: severe renal artery stenosis (≥70%) with true resistant hypertension, rapidly declining kidney function, or recurrent heart failure/sudden pulmonary edema. At baseline, the mean 24‐hour ambulatory systolic blood pressure was 166.2 mm Hg (95% CI, 162.0–170.4), the defined daily dose of antihypertensive medication was 6.5 (95% CI, 5.8–7.3), and the estimated glomerular filtration rate was 41.1 mL/min per 1.73m(2) (95% CI, 36.6–45.6). In 96 patients with available 3‐month follow‐up data, mean 24‐hour ambulatory systolic blood pressure decreased by 19.6 mm Hg (95% CI, 15.4–23.8; P<0.001), the defined daily dose of antihypertensive medication was reduced by 52% (95% CI, 41%–62%; P<0.001), and estimated glomerular filtration rate increased by 7.8 mL/min per 1.73m(2) (95% CI, 4.5–11.1; P<0.001). All changes persisted after 24 month follow‐up. Among 17 patients with a history of hospitalization for acute decompensated heart failure, 14 patients had no new episodes after successful revascularization. CONCLUSIONS: In this prospective cohort study, we observed a reduction in blood pressure and antihypertensive medication, an increase in estimated glomerular filtration rate, and a decrease in new hospital admissions attributable to heart failure/sudden pulmonary edema after renal artery stenting. REGISTRATION: URL: https://clinicaltrials.gov. Identifier: NCT02770066

    Abnormal increase in urinary aquaporin-2 excretion in response to hypertonic saline in essential hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dysregulation of the expression/shuttling of the aquaporin-2 water channel (AQP2) and the epithelial sodium channel (ENaC) in renal collecting duct principal cells has been found in animal models of hypertension. We tested whether a similar dysregulation exists in essential hypertension.</p> <p>Methods</p> <p>We measured urinary excretion of AQP2 and ENaC β-subunit corrected for creatinine (u-AQP2<sub>CR</sub>, u-ENaC<sub>β-CR</sub>), prostaglandin E2 (u-PGE<sub>2</sub>) and cyclic AMP (u-cAMP), fractional sodium excretion (FE<sub>Na</sub>), free water clearance (C<sub>H2O</sub>), as well as plasma concentrations of vasopressin (AVP), renin (PRC), angiotensin II (Ang II), aldosterone (Aldo), and atrial and brain natriuretic peptide (ANP, BNP) in 21 patients with essential hypertension and 20 normotensive controls during 24-h urine collection (baseline), and after hypertonic saline infusion on a 4-day high sodium (HS) diet (300 mmol sodium/day) and a 4-day low sodium (LS) diet (30 mmol sodium/day).</p> <p>Results</p> <p>At baseline, no differences in u-AQP2<sub>CR </sub>or u-ENaC<sub>β-CR </sub>were measured between patients and controls. U-AQP2<sub>CR </sub>increased significantly more after saline in patients than controls, whereas u-ENaC<sub>β-CR </sub>increased similarly. The saline caused exaggerated natriuretic increases in patients during HS intake. Neither baseline levels of u-PGE<sub>2</sub>, u-cAMP, AVP, PRC, Ang II, Aldo, ANP, and BNP nor changes after saline could explain the abnormal u-AQP2<sub>CR </sub>response.</p> <p>Conclusions</p> <p>No differences were found in u-AQP2<sub>CR </sub>and u-ENaC<sub>β-CR </sub>between patients and controls at baseline. However, in response to saline, u-AQP2<sub>CR </sub>was abnormally increased in patients, whereas the u-ENaC<sub>β-CR </sub>response was normal. The mechanism behind the abnormal AQP2 regulation is not clarified, but it does not seem to be AVP-dependent.</p> <p>Clinicaltrial.gov identifier</p> <p><a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=00345124">NCT00345124</a>.</p

    Reliability of rubidium-82 PET/CT for renal perfusion determination in healthy subjects

    No full text
    Abstract Background Changes in renal perfusion may play a pathophysiological role in hypertension and kidney disease, however to date, no method for renal blood flow (RBF) determination in humans has been implemented in clinical practice. In a previous study, we demonstrated that estimation of renal perfusion based on a single positron emission tomography/computed tomography (PET/CT) scan with Rubidium-82 (82Rb) is feasible and found an approximate 5% intra-assay coefficient of variation for both kidneys, indicative of a precise method.This study’s aim was to determine the day-to day variation of 82Rb PET/CT and to test the method’s ability to detect increased RBF induced by infusion of amino acids. Methods Seventeen healthy subjects underwent three dynamic 82Rb PET/CT scans over two examination days comprising: Day A, a single 8-minute dynamic scan and Day B, two scans performed before (baseline) and after RBF stimulation by a 2-hour amino acid-infusion. The order of examination days was determined by randomization. Time activity curves for arterial and renal activity with a 1-tissue compartment model were used for flow estimation; the K1 kinetic parameter representing renal 82Rb clearance. Day-to-day variation was calculated based on the difference between the unstimulated K1 values on Day A and Day B and paired t-testing was performed to compare K1 values at baseline and after RBF stimulation on Day B. Results Day-to-day variation was observed to be 5.5% for the right kidney and 6.0% for the left kidney (n = 15 quality accepted scans). K1 values determined after amino acid-infusion were significantly higher than pre-infusion values (n = 17, p = 0.001). The mean percentage change in K1 from baseline was 13.2 ± 12.9% (range − 10.4 to 35.5) for the right kidney; 12.9 ± 13.2% (range − 15.7 to 35.3) for the left kidney. Conclusion Day-to-day variation is acceptably low. A significant K1 increase from baseline is detected after application of a known RBF stimulus, indicating that 82Rb PET/CT scanning can provide a precise method for evaluation of RBF and it is able to determine changes herein. Clinical Trial Registration EU Clinical Trials Register, 2017-005008-88. Registered 18/01/2018
    corecore