4 research outputs found

    Dispersion of Graphene in an Aqueous Solution with Poly(sodium 4-styrenesulfonate) Monitored by Capillary Electrophoresis

    Get PDF
    Graphene was dispersed in an aqueous solution with poly(sodium 4-styrenesulfonate) as a dispersant. The charge of the graphene came to be apparently negative by the adsorption of poly(4-styrenesulfonate) ion (PSS). Two kinds of PSS were examined: the average molecular masses of 70,000 and 1,000,000 (PSS 70,000 and PSS 1,000,000, respectively). Capillary electrophoresis was used to evaluate the dispersion of the apparently anionic graphene in an aqueous solution. A broad signal corresponding to the dispersed graphene was detected in the electropherograms. The effective electrophoretic mobility of the dispersed graphene was somewhat larger at higher concentrations of PSS 70,000, suggesting that the adsorbed amount of PSS 70,000 increased. Even when the separation buffer did not contain PSS, the broad signal of the anionic graphene was still detected. The peak height and/or the peak area, as well as the effective electrophoretic mobility of the graphene decreased little at the reduced applied voltages, i.e., at longer separation/detection time. Therefore, the adsorption of PSS is irreversible or the desorption of PSS from the graphene surface is very slow. Accordingly, the dispersed graphene with PSS would be separated from the matrix PSS by the electrophoretic separation

    Capillary Electrophoretic Characterization of Water-soluble Carbon Nanodots Formed from Glutamic Acid and Boric Acid under Microwave Irradiation

    Get PDF
    Water-soluble carbon nanodots (CND) were synthesized under microwave irradiation from glutamic acid or glutamic acid–boric acid mixture. The CNDs were collected in an aqueous solution through size fractionation by centrifugal filtration. The CNDs thus prepared were subjected to characterization by capillary electrophoresis (CE). A peak signal of anionic substance was detected in the electropherogram, and it was found to be a major component of the CNDs. The effective electrophoretic mobility of the major component was almost identical over the pH range between 6.7 and 11.6, suggesting that the functional group of amine or boric acid moiety was not included in the CNDs. The effective electrophoretic mobility decreased at an acidic pH of less than 5, and it was suggested that carboxylate moiety was included in the CNDs. A signal of less-charged CNDs was also detected in the electropherogram, and the CNDs were characterized by a CE format of micellar electrokinetic chromatography. Two or four peaks were detected just after the electroosmotic flow; the less-charged CNDs were thus hydrophilic. The affinity interaction was also examined between the major anionic CNDs and a hydrophobic pairing cation. The peak signal of the major anionic CNDs broadened, and its theoretical number of plates decreased in the presence of tetrabutylammonium ion in the separation buffer. A small portion of the anionic CNDs were a little hydrophobic at different degrees, and their effective electrophoretic mobility decreased by the hydrophobic interaction, resulting in peak broadening of the anionic CNDs

    Polyethylene Glycols for the Dispersion Development of Graphene in an Aqueous Surfactant Solution Studied by Affinity Capillary Electrophoresis

    Get PDF
    Water-soluble nonionic polymers of polyethylene glycol (PEG), poly(vinyl alcohol) (PVA), and polyvinylpyrrolidone (PVP) were examined to develop the dispersion of graphene in an aqueous surfactant solution. Sodium dodecylbenzenesulfonate was used as an anionic surfactant to disperse graphene in an aqueous solution and to give negative charge on it. The dispersion of graphene was monitored through the electropherograms in affinity capillary electrophoresis; a broad peak for the dispersed graphene and shot signals for the aggregated one. When PEG was added in the separation buffer as an affinity reagent, the number of the shot signals in the electropherogram was reduced; PEG can develop the dispersion of graphene in an aqueous surfactant solution. The dispersion was also developed with PVP or PVA. The effective electrophoretic mobility of the dispersed graphene was reduced by using the polymer as an affinity reagent. The result suggested that the anionic surfactant on the graphene surface was competitively substituted with the nonionic polymer. The degree of the decrease in the effective electrophoretic mobility was larger with PEG with a high-molecular mass. The broad peak of the dispersed graphene got narrower by the addition of PEG, and the number of theoretical plates was improved
    corecore