297 research outputs found
Detection of mRNA using the BIACORE
We present the detection of native mRNA using the BIACORE system. The influence of different probes and flow rates on the detection is shown and compared to the hybridisation of oligonucleotides. Probes for mRNA detection were chosen by calculations of secondary structures using energy minimizing criteria based on the algorithm of Zuker. Probe concentrations were optimised as well as the regeneration conditions for the sensor surface. The influence of the flow rate appeared to be more marked for mRNA than for oligonucleotide hybridisation
Economic and physical determinants of the global distributions of crop pests and pathogens
Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 +/- 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens
Using climate information to support crop breeding decisions and adaptation in agriculture
Population growth in the next few decades will increase the need for food production, while the yields of major food crops could be impacted by the changing climate and changing threats from pests and pathogens. Crop breeding, both through conventional techniques, and GM assisted breeding could help meet these challenges, if adequately supported by appropriate information on the future climate. We highlight some of the major challenges for crop breeders and growers in the coming decades, and describe the main characteristics of crop breeding techniques and other adaptation options for agriculture. We review recent uses of climate information to support crop breeding decisions and make recommendations for how this might be improved. We conclude that there is significant potential for breeders to work more closely with climate scientists and crop modellers in order to address the challenges of climate change. It is not yet clear how climate information can best be used. Fruitful areas of investigation include: provision of climate information to identify key target breeding traits and develop improved success criteria (e.g. for heat/drought stress); identification of those conditions under which multiple stress factors (for example, heat stress, mid-season drought stress, flowering drought stress, terminal drought stress) are important in breeding programmes; use of climate information to inform selection of trial sites; identification of the range of environments and locations under which crop trials should be performed (likely to be a wider range of environments than done at present); identification of appropriate duration of trials (likely to be longer than current trials, due to the importance of capturing extreme events); and definition of appropriate methods for incorporating climate information into crop breeding programmes, depending on the specific needs of the breeding programme and the strengths and weaknesses of available approaches. Better knowledge is needed on climate-related thresholds important to crop breeders, for example on the frequency and severity of extreme climate events relevant to the product profile, or to help provide tailored climate analyses (particularly for extreme events). The uncertainties inherent in climate and impact projections provide a particular challenge for translating climate science into actionable outcomes for agriculture. Further work is needed to explore relevant social and economic assumptions such as the level and distribution of real incomes, changing consumption patterns, health impacts, impacts on markets and trade, and the impact of legislation relating to conservation, the environment and climate change
Predicting EQ-5D-5L crosswalk from the PROMIS-29 profile for the United Kingdom, France, and Germany
BACKGROUND: EQ-5D health state utilities (HSU) are commonly used in health economics to compute quality-adjusted life years (QALYs). The EQ-5D, which is country-specific, can be derived directly or by mapping from self-reported health-related quality of life (HRQoL) scales such as the PROMIS-29 profile. The PROMIS-29 from the Patient Reported Outcome Measures Information System is a comprehensive assessment of self-reported health with excellent psychometric properties. We sought to find optimal models predicting the EQ-5D-5L crosswalk from the PROMIS-29 in the United Kingdom, France, and Germany and compared the prediction performances with that of a US model.
METHODS: We collected EQ-5D-5L and PROMIS-29 profiles and three samples representative of the general populations in the UK (n = 1509), France (n = 1501), and Germany (n = 1502). We used stepwise regression with backward selection to find the best models to predict the EQ-5D-5L crosswalk from all seven PROMIS-29 domains. We investigated the agreement between the observed and predicted EQ-5D-5L crosswalk in all three countries using various indices for the prediction performance, including Bland-Altman plots to examine the performance along the HSU continuum.
RESULTS: The EQ-5D-5L crosswalk was best predicted in France (nRMSEFRA = 0.075, nMAEFRA = 0.052), followed by the UK (nRMSEUK = 0.076, nMAEUK = 0.053) and Germany (nRMSEGER = 0.079, nMAEGER = 0.051). The Bland-Altman plots show that the inclusion of higher-order effects reduced the overprediction of low HSU scores.
CONCLUSIONS: Our models provide a valid method to predict the EQ-5D-5L crosswalk from the PROMIS-29 for the UK, France, and Germany
The fossil record of early tetrapods: worker effort and the end-Permian mass extinction
It is important to understand the quality of the fossil record of early tetrapods (Tetrapoda, minus Lissamphibia and Amniota) because of their key role in the transition of vertebrates from water to land, their dominance of terrestrial faunas for over 100 million years of the late Palaeozoic and earlyMesozoic, and their variable fates during the endâPermian mass extinction. The first description of an early tetrapod dates back to 1824, and since then discoveries have occurred at a rather irregular pace, with peaks and troughs corresponding to some of the vicissitudes of human history through the past two centuries. As expected, the record is dominated by the wellâsampled sedimentary basins of Europe and North America, but finds from other continents are increasing rapidly. Comparisons of snapshots of knowledge in 1900, 1950, and 2000 show that discovery of new species has changed the shape of the speciesâlevel diversification curve, contrary to earlier studies of familyâlevel taxa. There is, however, little evidence that taxon counts relate to research effort (as counted by numbers of publications), and there are no biasing effects associated with differential study of different time intervals through the late Palaeozoic and Mesozoic. In fact, levels of effort are apparently not related to geological time, with no evidence that workers have spent more time on more recent parts of the record. In particular, the endâPermian mass extinction was investigated to determine whether diversity changes through that interval might reflect worker effort: it turns out that most records of early tetrapod taxa (when corrected for duration of geological series) occur in the Lower Triassic
High-resolution computed tomography reconstructions of invertebrate burrow systems
The architecture of biogenic structures can be highly influential in determining species contributions to major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography (ÎŒ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria. These data (â€2,000 raw image slices aquariumâ1, isotropic voxel resolution, 81âÎŒm) provide reference models that can be used for the development of novel structural analysis routines that will be of value within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical engineering. We also envisage opportunity for those investigating transport networks, vascular systems, plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology and ideas without the need to generate a complete three-dimensional computation of exemplar architecture
Emerging health threat and cost of Fusarium mycotoxins in European wheat
Mycotoxins harm human and livestock health, while damaging economies. Here we reveal the changing threat of Fusarium head blight (FHB) mycotoxins in European wheat, using data from the European Food Safety Agency and agribusiness (BIOMIN, World Mycotoxin Survey) for ten years (2010â2019). We show persistent, high, single- and multi-mycotoxin contamination alongside changing temporal-geographical distributions, indicative of altering FHB disease pressure and pathogen populations, highlighting the potential synergistic negative health consequences and economic cost
The exceptional abandonment of metal tools by North American hunter-gatherers, 3000 B.P.
Most prehistoric societies that experimented with copper as a tool raw material eventually abandoned stone as their primary medium for tool making. However, after thousands of years of experimentation with this metal, North American hunter-gatherers abandoned it and returned to the exclusive use of stone. Why? We experimentally confirmed that replica copper tools are inferior to stone ones when each is sourced in the same manner as their archaeological counterparts and subjected to identical tasks. Why, then, did copper consistently lead to more advanced metallurgy in most other areas of the world? We suggest that it was the unusual level of purity in the North American copper sourced by North American groups, and that naturally occurring alloys yielded sufficiently superior tools to encourage entry into the copper-bronze-iron continuum of tool manufacture in other parts of the world
Miniaturization optimized weapon killing power during the social stress of late pre-contact North America (AD 600-1600)
Before Europeans arrived to Eastern North America, prehistoric, indigenous peoples experienced a number of changes that culminated in the development of sedentary, maize agricultural lifeways of varying complexity. Inherent to these lifeways were several triggers of social stress including population nucleation and increase, intergroup conflict (warfare), and increased territoriality. Here, we examine whether this period of social stress co-varied with deadlier weaponry, specifically, the design of the most commonly found prehistoric archery component in late pre-contact North America: triangular stone arrow tips (TSAT). The examination of modern metal or carbon projectiles, arrows, and arrowheads has demonstrated that smaller arrow tips penetrate deeper into a target than do larger ones. We first experimentally confirm that this relationship applies to arrow tips made from stone hafted onto shafts made from wood. We then statistically assess a large sample (n = 742) of late pre-contact TSAT and show that these specimens are extraordinarily small. Thus, by miniaturizing their arrow tips, prehistoric people in Eastern North America optimized their projectile weaponry for maximum penetration and killing power in warfare and hunting. Finally, we verify that these functional advantages were selected across environmental and cultural boundaries. Thus, while we cannot and should not rule out stochastic, production economizing, or non-adaptive cultural processes as an explanation for TSAT, overall our results are consistent with the hypothesis that broad, socially stressful demographic changes in late pre-contact Eastern North America resulted in the miniaturizationâand augmented lethalityâof stone tools across the region
- âŠ