1,122 research outputs found

    A rapid method for the in-field analysis of amphetamines employing the agilent bioanalyzer

    Full text link
    This paper reports the first analysis of small molecules on the Agilent bio-analyser. The Bioanalyzer is a commercial lab-on-a-chip instrument designed for the analysis of DNA and proteins. We demonstrate that the instrument is suitable for analyses beyond its design specifications. Amphetamine, methamphetamine and pseudoephedrine were separated with a 50 mM borate and 50 mM sodium dodecyl sulfate (SDS) buffer at pH 9.66. The analytes were derivatised with fluorescein isothiocyanate (FITC) in 3 minutes with a heating block set at 90°C, reducing the typical time of 12 hours required for amine-labelling. Analytes were detected by LED-induced fluorescence (λ = 525 nm and λ = 470 nm). Furthermore, five amphetamine analogues were baseline separated within 1 minute. An average limit of detection of 0.6 mg mL -1 and limit of quantification of 2.2μ mg mL-1 were obtained for all analytes. These rapid analyses in conjunction with a fast and reliable derivatisation method with FITC demonstrate its potential use for the in-field analysis of samples of forensic significance. © 2011 The Royal Society of Chemistry

    Screening of gunshot residues using desorption electrospray ionisation-mass spectrometry (DESI-MS)

    Full text link
    Several studies have indicated that there are potential environmental sources of particles resembling inorganic primer found in gunshot residues (GSR); as a consequence examiners are reluctant to unambiguously assign the origin of inorganic particles. If organic gunshot residues (OGSR) were found in combination with inorganic particles, the possibility of environmental sources could be potentially eliminated, thereby significantly enhancing the strength of the evidence.Methods have been previously described whereby GSR specimens can be analysed for the presence of OGSR or inorganic GRS (IGSR). However, no methods have been reported that allow the analysis of both OGSR and IGSR on the same specimen.Described in this article is a direct method using desorption electrospray ionisation-mass spectrometry (DESI-MS) for the detection of methyl centralite (MC), ethyl centralite (EC) and diphenylamine (DPA) on adhesive tape GSR stubs typically used for scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) analysis. The optimisation of numerous parameters was conducted using an experimental design. The results indicate that direct analysis of these organic components of GSR is possible although some limitations were also identified.This initial investigation has also indicated that subjecting stubs to DESI analysis does not interfere with subsequent SEM-EDX analysis of primer residues; therefore the technique described herein allows a comprehensive examination of GSR that would be highly probative in the event that both OGSR and IGSR are detected in the same specimen. © 2011 Elsevier Ireland Ltd

    Detection of gunshot residues using mass spectrometry

    Full text link
    In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR) due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR-) like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS) coupled to a chromatographic system is a powerful tool due to its high selectivity and sensitivity. Further, modern MS instruments can detect and identify a number of explosives and additives which may require different ionization techniques. Finally, MS has been applied to the analysis of both OGSR and inorganic gunshot residue (IGSR), although the "gold standard" for analysis is scanning electron microscopy with energy dispersive X-ray microscopy (SEM-EDX). This review presents an overview of the technical attributes of currently available MS and ionization techniques and their reported applications to GSR analysis. © 2014 Regina Verena Taudte et al

    A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed μpADs

    Full text link
    A new technique for the detection of explosives has been developed based on fluorescence quenching of pyrene on paper-based analytical devices (μPADs). Wax barriers were generated (150 °C, 5 min) using ten different colours. Magenta was found as the most suitable wax colour for the generation of the hydrophobic barriers with a nominal width of 120 μm resulting in fully functioning hydrophobic barriers. One microliter of 0.5 mg mL-1 pyrene dissolved in an 80 : 20 methanol-water solution was deposited on the hydrophobic circle (5 mm diameter) to produce the active microchip device. Under ultra-violet (UV) illumination, ten different organic explosives were detected using the μPAD, with limits of detection ranging from 100-600 ppm. A prototype of a portable battery operated instrument using a 3 W power UV light-emitting-diode (LED) (365 nm) and a photodiode sensor was also built and evaluated for the successful automatic detection of explosives and potential application for field-based screening. © 2013 The Royal Society of Chemistry

    Forensic intelligence framework. Part II: study of the main generic building blocks and challenges through the examples of illicit drugs and false identity documents monitoring

    Get PDF
    The development of forensic intelligence relies on the expression of suitable models that better represent the contribution of forensic intelligence in relation to the criminal justice system, policing and security. Such models assist in comparing and evaluating methods and new technologies, provide transparency and foster the development of new applications. Interestingly, strong similarities between two separate projects focusing on specific forensic science areas were recently observed. These observations have led to the induction of a general model (Part I) that could guide the use of any forensic science case data in an intelligence perspective. The present article builds upon this general approach by focusing on decisional and organisational issues. The article investigates the comparison process and evaluation system that lay at the heart of the forensic intelligence framework, advocating scientific decision criteria and a structured but flexible and dynamic architecture. These building blocks are crucial and clearly lay within the expertise of forensic scientists. However, it is only part of the problem. Forensic intelligence includes other blocks with their respective interactions, decision points and tensions (e.g. regarding how to guide detection and how to integrate forensic information with other information). Formalising these blocks identifies many questions and potential answers. Addressing these questions is essential for the progress of the discipline. Such a process requires clarifying the role and place of the forensic scientist within the whole process and their relationship to other stakeholders

    Collective Flow from the Intranuclear Cascade Model

    Get PDF
    The phenomenon of collective flow in relativistic heavy ion collisions is studied using the hadronic cascade model ARC. Direct comparison is made to data gathered at the Bevalac, for Au+Au at p=12p=1-2 GeV/c. In contrast to the standard lore about the cascade model, collective flow is well described quantitatively without the need for explicit mean field terms to simulate the nuclear equation of state. Pion collective flow is in the opposite direction to nucleon flow as is that of anti-nucleons and other produced particles. Pion and nucleon flow are predicted at AGS energies also, where, in light of the higher baryon densities achieved, we speculate that equation of state effects may be observable.Comment: 9 pages, 2 figures include

    Neutrons from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 AMeV

    Full text link
    We measured neutron triple-differential cross sections from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 \AMeV. The reaction plane for each collision was estimated from the summed transverse velocity vector of the charged fragments emitted in the collision. We examined the azimuthal distribution of the triple-differential cross sections as a function of the polar angle and the neutron rapidity. We extracted the average in--plane transverse momentum Px\langle P_x\rangle and the normalized observable Px/P\langle P_x/P_\perp\rangle, where PP_\perp is the neutron transverse momentum, as a function of the neutron center-of-mass rapidity, and we examined the dependence of these observables on beam energy. These collective flow observables for neutrons, which are consistent with those of protons plus bound nucleons from the Plastic Ball Group, agree with the Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum--dependent interaction. Also, we calculated the polar-angle-integrated maximum azimuthal anisotropy ratio R from the value of Px/P\langle P_x/P_\perp\rangle.Comment: 20 LaTeX pages. 11 figures to be faxed on request, send email to sender's addres

    From parameter space constraints to the precision determination of the leptonic Dirac CP phase

    Full text link
    We discuss the precision determination of the leptonic Dirac CP phase δCP\delta_{CP} in neutrino oscillation experiments, where we apply the concept of ``CP coverage''. We demonstrate that this approach carries more information than a conventional CP violation measurement, since it also describes the exclusion of parameter regions. This will be very useful for next-generation long baseline experiments where for sizable sin22θ13\sin^2 2 \theta_{13} first constraints on δCP\delta_{CP} can be obtained. As the most sophisticated experimental setup, we analyze neutrino factories, where we illustrate the major difficulties in their analysis. In addition, we compare their potential to the one of superbeam upgrades and next-generation experiments, which also includes a discussion of synergy effects. We find a strong dependence on the yet unknown true values of sin22θ13\sin^2 2 \theta_{13} and δCP\delta_{CP}, as well as a strong, non-Gaussian dependence on the confidence level. A systematic understanding of the complicated parameter dependence will be given. In addition, it is shown that comparisons of experiments and synergy discussions do in general not allow for an unbiased judgment if they are only performed at selected points in parameter space. Therefore, we present our results in dependence of the yet unknown true values of sin22θ13\sin^2 2 \theta_{13} and δCP\delta_{CP}. Finally we show that for δCP\delta_{CP} precision measurements there exist simple strategies including superbeams, reactor experiments, superbeam upgrades, and neutrino factories, where the crucial discriminator is sin22θ13102\sin^2 2 \theta_{13} \sim 10^{-2}.Comment: 32 pages, 9 figure

    Very Long Baseline Neutrino Oscillation Experiment for Precise Measurements of Mixing Parameters and CP Violating Effects

    Get PDF
    We analyze the prospects of a feasible, Brookhaven National Laboratory based, very long baseline (BVLB) neutrino oscillation experiment consisting of a conventional horn produced low energy wide band beam and a detector of 500 kT fiducial mass with modest requirements on event recognition and resolution. Such an experiment is intended primarily to determine CP violating effects in the neutrino sector for 3-generation mixing. We analyze the sensitivity of such an experiment. We conclude that this experiment will allow determination of the CP phase δCP\delta_{CP} and the currently unknown mixing parameter θ13\theta_{13}, if sin22θ130.01\sin ^2 2 \theta_{13} \geq 0.01, a value 15\sim 15 times lower than the present experimental upper limit. In addition to θ13\theta_{13} and δCP\delta_{CP}, the experiment has great potential for precise measurements of most other parameters in the neutrino mixing matrix including Δm322\Delta m^2_{32}, sin22θ23\sin^2 2\theta_{23}, Δm212×sin2θ12\Delta m^2_{21}\times \sin 2 \theta_{12}, and the mass ordering of neutrinos through the observation of the matter effect in the νμνe\nu_\mu \to \nu_e appearance channel.Comment: 12 pages, 10 figure

    Colour-singlet strangelets at finite temperature

    Full text link
    Considering massless uu and dd quarks, and massive (150 MeV) ss quarks in a bag with the bag pressure constant B1/4=145B^{1/4} = 145 MeV, a colour-singlet grand canonical partition function is constructed for temperatures T=130T = 1-30 MeV. Then the stability of finite size strangelets is studied minimizing the free energy as a function of the radius of the bag. The colour-singlet restriction has several profound effects when compared to colour unprojected case: (1) Now bulk energy per baryon is increased by about 250250 MeV making the strange quark matter unbound. (2) The shell structures are more pronounced (deeper). (3) Positions of the shell closure are shifted to lower AA-values, the first deepest one occuring at A=2A=2, famous HH-particle ! (4) The shell structure at A=2A=2 vanishes only at T30T\sim 30 MeV, though for higher AA-values it happens so at T20T\sim 20 MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from first Autho
    corecore