55 research outputs found

    Cartan's spiral staircase in physics and, in particular, in the gauge theory of dislocations

    Full text link
    In 1922, Cartan introduced in differential geometry, besides the Riemannian curvature, the new concept of torsion. He visualized a homogeneous and isotropic distribution of torsion in three dimensions (3d) by the "helical staircase", which he constructed by starting from a 3d Euclidean space and by defining a new connection via helical motions. We describe this geometric procedure in detail and define the corresponding connection and the torsion. The interdisciplinary nature of this subject is already evident from Cartan's discussion, since he argued - but never proved - that the helical staircase should correspond to a continuum with constant pressure and constant internal torque. We discuss where in physics the helical staircase is realized: (i) In the continuum mechanics of Cosserat media, (ii) in (fairly speculative) 3d theories of gravity, namely a) in 3d Einstein-Cartan gravity - this is Cartan's case of constant pressure and constant intrinsic torque - and b) in 3d Poincare gauge theory with the Mielke-Baekler Lagrangian, and, eventually, (iii) in the gauge field theory of dislocations of Lazar et al., as we prove for the first time by arranging a suitable distribution of screw dislocations. Our main emphasis is on the discussion of dislocation field theory.Comment: 31 pages, 8 figure

    Amsterdam, the Netherlands

    No full text

    Dissection of the contributions toward dimerization of glycopeptide antibiotics

    No full text
    Copyright 2007 Elsevier B.V., All rights reserved.A procedure for the determination of association constants in aqueous solution using hydrogen-deuterium exchange has been developed and used to measure the dimerization constant, K(dim), for a number of strongly dimerizing glycopeptide antibiotics. These values provide further insight into the thermodynamic contributions of various structural epitopes to the dimerization of these antibiotics. Consideration of ligand binding affinities together with dimerization potentials provides evidence that dimerization is implicated in the physiological mode of action of these antibiotics.Peer reviewe

    Transit-oriented development

    No full text

    Social exclusion

    No full text

    Book reviews

    No full text

    Planning Theory as Culture and Experience

    No full text
    corecore