249 research outputs found
Giardia duodenalis and Cryptosporidium occurrence in Australian sea lions (Neophoca cinerea) exposed to varied levels of human interaction
AbstractGiardia and Cryptosporidium are amongst the most common protozoan parasites identified as causing enteric disease in pinnipeds. A number of Giardia assemblages and Cryptosporidium species and genotypes are common in humans and terrestrial mammals and have also been identified in marine mammals. To investigate the occurrence of these parasites in an endangered marine mammal, the Australian sea lion (Neophoca cinerea), genomic DNA was extracted from faecal samples collected from wild populations (n = 271) in Southern and Western Australia and three Australian captive populations (n = 19). These were screened using PCR targeting the 18S rRNA of Giardia and Cryptosporidium. Giardia duodenalis was detected in 28 wild sea lions and in seven captive individuals. Successful sequencing of the 18S rRNA gene assigned 27 Giardia isolates to assemblage B and one to assemblage A, both assemblages commonly found in humans. Subsequent screening at the gdh and β-giardin loci resulted in amplification of only one of the 35 18S rRNA positive samples at the β-giardin locus. Sequencing at the β-giardin locus assigned the assemblage B 18S rRNA confirmed isolate to assemblage AI. The geographic distribution of sea lion populations sampled in relation to human settlements indicated that Giardia presence in sea lions was highest in populations less than 25 km from humans. Cryptosporidium was not detected by PCR screening in either wild colonies or captive sea lion populations. These data suggest that the presence of G. duodenalis in the endangered Australian sea lion is likely the result of dispersal from human sources. Multilocus molecular analyses are essential for the determination of G. duodenalis assemblages and subsequent inferences on transmission routes to endangered marine mammal populations
The Bones of the Milky Way
The very long, thin infrared dark cloud "Nessie" is even longer than had been previously claimed, and an analysis of its Galactic location suggests that it lies directly in the Milky Way’s mid-plane, tracing out a highly elongated bone-like feature within the prominent Scutum-Centaurus spiral arm. Re-analysis of mid-infrared imagery from the Spitzer Space Telescope shows that this IRDC is at least 2, and possibly as many as 8 times longer than had originally been claimed by Nessie’s discoverers, Jackson et al. (2010); its aspect ratio is therefore at least 150:1, and possibly as large as 800:1. A careful accounting for both the Sun’s offset from the Galactic plane (∼25 pc) and the Galactic center’s offset from the ()=(0,0) position defined by the IAU in 1959 shows that the latitude of the true Galactic mid-plane at the 3.1 kpc distance to the Scutum-Centaurus Arm is not b=0, but instead closer to b=−0.5, which is the latitude of Nessie to within a few pc. Apparently, Nessie lies in the Galactic mid-plane. An analysis of the radial velocities of low-density (CO) and high-density () gas associated with the Nessie dust feature suggests that Nessie runs along the Scutum-Centaurus Arm in position-position-velocity space, which means it likely forms a dense ‘spine’ of the arm in real space as well. No galaxy-scale simulation to date has the spatial resolution to predict a Nessie-like feature, but extant simulations do suggest that highly elongated over-dense filaments should be associated with a galaxy’s spiral arms. Nessie is situated in the closest major spiral arm to the Sun toward the inner Galaxy, and appears almost perpendicular to our line of sight, making it the easiest feature of its kind to detect from our location (a shadow of an Arm’s bone, illuminated by the Galaxy beyond). Although the Sun’s (∼25 pc) offset from the Galactic plane is not large in comparison with the half-thickness of the plane as traced by Population I objects such as GMCs and HII regions (∼200 pc; Rix et al. (2013)), it may be significant compared with an extremely thin layer that might be traced out by Nessie-like ”bones“ of the Milky Way. Future high-resolution extinction and molecular line data may therefore allow us to exploit the Sun’s position above the plane to gain a (very foreshortened) view "from above” of dense gas in Milky Way’s disk and its structure.Astronom
A Mendelian Randomization Study Provides Evidence That Adiposity and Dyslipidemia Lead to Lower Urinary Albumin-to-Creatinine Ratio, a Marker of Microvascular Function
Urinary albumin-to-creatinine ratio (ACR) is a marker of diabetic nephropathy and microvascular damage. Metabolic-related traits are observationally associated with ACR, but their causal role is uncertain. Here, we confirmed ACR as a marker of microvascular damage and tested whether metabolic-related traits have causal relationships with ACR. The association between ACR and microvascular function (responses to acetylcholine [ACH] and sodium nitroprusside) was tested in the SUMMIT study. Two-sample Mendelian randomization (MR) was used to infer the causal effects of 11 metabolic risk factors, including glycemic, lipid, and adiposity traits, on ACR. MR was performed in up to 440,000 UK Biobank and 54,451 CKDGen participants. ACR was robustly associated with microvascular function measures in SUMMIT. Using MR, we inferred that higher triglyceride (TG) and LDL cholesterol (LDL-C) levels caused elevated ACR. A 1 SD higher TG and LDL-C level caused a 0.062 (95% CI 0.040, 0.083) and a 0.026 (95% CI 0.008, 0.044) SD higher ACR, respectively. There was evidence that higher body fat and visceral body fat distribution caused elevated ACR, while a metabolically "favorable adiposity" phenotype lowered ACR. ACR is a valid marker for microvascular function. MR suggested that seven traits have causal effects on ACR, highlighting the role of adiposity-related traits in causing lower microvascular function.</p
Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks
Undirected graphical models are widely used in statistics, physics and
machine vision. However Bayesian parameter estimation for undirected models is
extremely challenging, since evaluation of the posterior typically involves the
calculation of an intractable normalising constant. This problem has received
much attention, but very little of this has focussed on the important practical
case where the data consists of noisy or incomplete observations of the
underlying hidden structure. This paper specifically addresses this problem,
comparing two alternative methodologies. In the first of these approaches
particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently
explore the parameter space, combined with the exchange algorithm (Murray et
al., 2006) for avoiding the calculation of the intractable normalising constant
(a proof showing that this combination targets the correct distribution in
found in a supplementary appendix online). This approach is compared with
approximate Bayesian computation (Pritchard et al., 1999). Applications to
estimating the parameters of Ising models and exponential random graphs from
noisy data are presented. Each algorithm used in the paper targets an
approximation to the true posterior due to the use of MCMC to simulate from the
latent graphical model, in lieu of being able to do this exactly in general.
The supplementary appendix also describes the nature of the resulting
approximation.Comment: 26 pages, 2 figures, accepted in Journal of Computational and
Graphical Statistics (http://www.amstat.org/publications/jcgs.cfm
The evolution of the urinary bladder as a storage organ: scent trails and selective pressure of the first land animals in a computational simulation
The function of waste control in all living organisms is one of the vital importance. Almost universally, terrestrial tetrapods have a urinary bladder with a storage function. It is well documented that many marine and aerial species do not have an organ of such a function, or have one with very depressed storage functionality. Bladder morphology indicates it has evolved from a thin-walled structure used for osmoregulatory purposes, as it is currently used in many marine animals. It is hypothesised that the storage function of the urinary bladder allows for an evolutionary selective advantage in reducing the likelihood of successful predation. Random walks simulating predator and prey movements with simplified scent trails were utilised to represent various stages of the hunt: Detection and pursuit. A final evolutionary model is proposed in order to display the advantages over inter-generational time scales and illustrates how a bladder may evolve from an osmoregulatory organ to one of the storage. Data sets were generated for each case and analysed indicating the viability of such advantages. From the highly consistent results, three distinct characteristics of having a storage function in the urinary bladder are suggested: reduced scent trail detection rate; increased prey–predator separation (upon scent trail detection); and a reduced probability of successful capture upon scent detection by the predator. Furthered by the evolutionary model indicating such characteristics are conserved and augmented over many generations, it is concluded that prey–predator interactions provide a large selective pressure in the evolution of the urinary bladder and its storage function
Genetic Evidence for a Link Between Favorable Adiposity and Lower Risk of Type 2 Diabetes, Hypertension, and Heart Disease.
Recent genetic studies have identified some alleles that are associated with higher BMI but lower risk of type 2 diabetes, hypertension, and heart disease. These "favorable adiposity" alleles are collectively associated with lower insulin levels and higher subcutaneous-to-visceral adipose tissue ratio and may protect from disease through higher adipose storage capacity. We aimed to use data from 164,609 individuals from the UK Biobank and five other studies to replicate associations between a genetic score of 11 favorable adiposity variants and adiposity and risk of disease, to test for interactions between BMI and favorable adiposity genetics, and to test effects separately in men and women. In the UK Biobank, the 50% of individuals carrying the most favorable adiposity alleles had higher BMIs (0.120 kg/m(2) [95% CI 0.066, 0.174]; P = 1E-5) and higher body fat percentage (0.301% [0.230, 0.372]; P = 1E-16) compared with the 50% of individuals carrying the fewest alleles. For a given BMI, the 50% of individuals carrying the most favorable adiposity alleles were at lower risk of type 2 diabetes (odds ratio [OR] 0.837 [0.784, 0.894]; P = 1E-7), hypertension (OR 0.935 [0.911, 0.958]; P = 1E-7), and heart disease (OR 0.921 [0.872, 0.973]; P = 0.003) and had lower blood pressure (systolic -0.859 mmHg [-1.099, -0.618]; P = 3E-12 and diastolic -0.394 mmHg [-0.534, -0.254]; P = 4E-8). In women, these associations could be explained by the observation that the alleles associated with higher BMI but lower risk of disease were also associated with a favorable body fat distribution, with a lower waist-to-hip ratio (-0.004 cm [95% CI -0.005, -0.003] 50% vs. 50%; P = 3E-14), but in men, the favorable adiposity alleles were associated with higher waist circumference (0.454 cm [0.267, 0.641] 50% vs. 50%; P = 2E-6) and higher waist-to-hip ratio (0.0013 [0.0003, 0.0024] 50% vs. 50%; P = 0.01). Results were strengthened when a meta-analysis with five additional studies was conducted. There was no evidence of interaction between a genetic score consisting of known BMI variants and the favorable adiposity genetic score. In conclusion, different molecular mechanisms that lead to higher body fat percentage (with greater subcutaneous storage capacity) can have different impacts on cardiometabolic disease risk. Although higher BMI is associated with higher risk of diseases, better fat storage capacity could reduce the risk.This is the author accepted manuscript. The final version is available from the American Diabetes Association via http://dx.doi.org/10.2337/db15-167
Eggshell membrane in the treatment of pain and stiffness from osteoarthritis of the knee: a randomized, multicenter, double-blind, placebo-controlled clinical study
Natural Eggshell Membrane (NEM®) is a new novel dietary supplement that contains naturally occurring glycosaminoglycans and proteins essential for maintaining healthy articular cartilage and the surrounding synovium. The randomized, multicenter, double-blind, placebo-controlled Osteoarthritis Pain Treatment Incorporating NEM® clinical study was conducted to evaluate the efficacy and safety of NEM® as a treatment for pain and stiffness associated with osteoarthritis of the knee. Sixty-seven patients were randomly assigned to receive either oral NEM® 500 mg (n = 34) or placebo (n = 33) daily for 8 weeks. The primary endpoint was the change in overall Western Ontario and McMasters Universities (WOMAC) Osteoarthritis Index as well as pain, stiffness, and function WOMAC subscales measured at 10, 30, and 60 days. The clinical assessment was performed on the intent-to-treat population. Supplementation with NEM® produced an absolute rate of response that was statistically significant (up to 26.6%) versus placebo at all time points for both pain and stiffness, but was not significantly improved for function and overall WOMAC scores, although trending toward improvement. Rapid responses were seen for mean pain subscores (15.9% reduction, P = 0.036) and mean stiffness subscores (12.8% reduction, P = 0.024) occurring after only 10 days of supplementation. There were no serious adverse events reported during the study and the treatment was reported to be well tolerated by study participants. Natural Eggshell Membrane (NEM®) is an effective and safe option for the treatment of pain and stiffness associated with knee osteoarthritis. Supplementation with NEM®, 500 mg taken once daily, significantly reduced both joint pain and stiffness compared to placebo at 10, 30, and 60 days. The Clinical Trial Registration number for this study is NCT00750477
Invasive Predators Deplete Genetic Diversity of Island Lizards
Invasive species can dramatically impact natural populations, especially those living on islands. Though numerous examples illustrate the ecological impact of invasive predators, no study has examined the genetic consequences for native populations subject to invasion. Here we capitalize on a natural experiment in which a long-term study of the brown anole lizard (Anolis sagrei) was interrupted by rat invasion. An island population that was devastated by rats recovered numerically following rat extermination. However, population genetic analyses at six microsatellite loci suggested a possible loss of genetic diversity due to invasion when compared to an uninvaded island studied over the same time frame. Our results provide partial support for the hypothesis that invasive predators can impact the genetic diversity of resident island populations
Synthesis of Well-Defined, Surfactant-Free Co<sub>3</sub>O<sub>4</sub> Nanoparticles:The Impact of Size and Manganese Promotion on Co<sub>3</sub>O<sub>4</sub> Reduction and Water Oxidation Activity
Abstract: A surfactant-free synthetic route has been developed to produce size-controlled, cube-like cobalt oxide nanoparticles of three different sizes in high yields. It was found that by using sodium nitrite as salt-mediating agent, near-quantitative yields could be obtained. The size of the nanoparticles could be altered from 11 to 22 nm by changing the cobalt concentration and reaction time. These surfactant-free nanoparticles form ideal substrates for facile deposition of further elements such as manganese. The effect of size of the cobalt oxide nanoparticles and the presence of manganese on the reducibility of cobalt oxide to metallic cobalt was investigated. Similarly, the effect of these parameters was investigated with a visible light promoted water oxidation system with cobalt oxide as catalyst, together with [Ru(bpy) 3] 2+ light harvester dye and an electron acceptor. Graphical Abstract: A novel surfactant-free synthetic route has been developed to produce size-controlled, cube shaped cobalt oxide nanoparticles in high yields. [Figure not available: see fulltext.]. </p
- …