188 research outputs found
Mapping the Secular Resonance for Retrograde Irregular Satellites
Constructing dynamical maps from the filtered output of numerical
integrations, we analyze the structure of the secular resonance for
fictitious irregular satellites in retrograde orbits. This commensurability is
associated to the secular angle , where
is the longitude of pericenter of the satellite and
corresponds to the (fixed) planetocentric orbit of the Sun. Our study is
performed in the restricted three-body problem, where the satellites are
considered as massless particles around a massive planet and perturbed by the
Sun. Depending on the initial conditions, the resonance presents a diversity of
possible resonant modes, including librations of around zero (as found
for Sinope and Pasiphae) or 180 degrees, as well as asymmetric librations (e.g.
Narvi). Symmetric modes are present in all giant planets, although each regime
appears restricted to certain values of the satellite inclination. Asymmetric
solutions, on the other hand, seem absent around Neptune due to its almost
circular heliocentric orbit. Simulating the effects of a smooth orbital
migration on the satellite, we find that the resonance lock is preserved as
long as the induced change in semimajor axis is much slower compared to the
period of the resonant angle (adiabatic limit). However, the librational mode
may vary during the process, switching between symmetric and asymmetric
oscillations. Finally, we present a simple scaling transformation that allows
to estimate the resonant structure around any giant planet from the results
calculated around a single primary mass.Comment: 11 pages, 13 figure
MAMA: An Algebraic Map for the Secular Dynamics of Planetesimals in Tight Binary Systems
We present an algebraic map (MAMA) for the dynamical and collisional
evolution of a planetesimal swarm orbiting the main star of a tight binary
system (TBS). The orbital evolution of each planetesimal is dictated by the
secular perturbations of the secondary star and gas drag due to interactions
with a protoplanetary disk. The gas disk is assumed eccentric with a constant
precession rate. Gravitational interactions between the planetesimals are
ignored. All bodies are assumed coplanar. A comparison with full N-body
simulations shows that the map is of the order of 100 times faster, while
preserving all the main characteristics of the full system.
In a second part of the work, we apply MAMA to the \gamma-Cephei, searching
for friendly scenarios that may explain the formation of the giant planet
detected in this system. For low-mass protoplanetary disks, we find that a
low-eccentricity static disk aligned with the binary yields impact velocities
between planetesimals below the disruption threshold. All other scenarios
appear hostile to planetary formation
Secular dynamics of planetesimals in tight binary systems: Application to Gamma-Cephei
The secular dynamics of small planetesimals in tight binary systems play a
fundamental role in establishing the possibility of accretional collisions in
such extreme cases. The most important secular parameters are the forced
eccentricity and secular frequency, which depend on the initial conditions of
the particles, as well as on the mass and orbital parameters of the secondary
star. We construct a second-order theory (with respect to the masses) for the
planar secular motion of small planetasimals and deduce new expressions for the
forced eccentricity and secular frequency. We also reanalyze the radial
velocity data available for Gamma-Cephei and present a series of orbital
solutions leading to residuals compatible with the best fits. Finally, we
discuss how different orbital configurations for Gamma-Cephei may affect the
dynamics of small bodies in circunmstellar motion. For Gamma-Cephei, we find
that the classical first-order expressions for the secular frequency and forced
eccentricity lead to large inaccuracies around 50 % for semimajor axes larger
than one tenth the orbital separation between the stellar components. Low
eccentricities and/or masses reduce the importance of the second-order terms.
The dynamics of small planetesimals only show a weak dependence with the
orbital fits of the stellar components, and the same result is found including
the effects of a nonlinear gas drag. Thus, the possibility of planetary
formation in this binary system largely appears insensitive to the orbital fits
adopted for the stellar components, and any future alterations in the system
parameters (due to new observations) should not change this picture. Finally,
we show that planetesimals migrating because of gas drag may be trapped in
mean-motion resonances with the binary, even though the migration is divergent.Comment: 11 pages, 9 figure
Dynamical stability analysis of the HD202206 system and constraints to the planetary orbits
Long-term precise Doppler measurements with the CORALIE spectrograph revealed
the presence of two massive companions to the solar-type star HD202206.
Although the three-body fit of the system is unstable, it was shown that a 5:1
mean motion resonance exists close to the best fit, where the system is stable.
We present here an extensive dynamical study of the HD202206 system aiming at
constraining the inclinations of the two known companions, from which we derive
possible ranges of value for the companion masses.
We study the long term stability of the system in a small neighborhood of the
best fit using Laskar's frequency map analysis. We also introduce a numerical
method based on frequency analysis to determine the center of libration mode
inside a mean motion resonance.
We find that acceptable coplanar configurations are limited to inclinations
to the line of sight between 30 and 90 degrees. This limits the masses of both
companions to roughly twice the minimum. Non coplanar configurations are
possible for a wide range of mutual inclinations from 0 to 90 degrees, although
configurations seem to be favored. We also confirm the
5:1 mean motion resonance to be most likely. In the coplanar edge-on case, we
provide a very good stable solution in the resonance, whose does not
differ significantly from the best fit. Using our method to determine the
center of libration, we further refine this solution to obtain an orbit with a
very low amplitude of libration, as we expect dissipative effects to have
dampened the libration.Comment: 14 pages, 18 figure
Dynamical analysis and constraints for the HD 196885 system
The HD\,196885 system is composed of a binary star and a planet orbiting the
primary. The orbit of the binary is fully constrained by astrometry, but for
the planet the inclination with respect to the plane of the sky and the
longitude of the node are unknown. Here we perform a full analysis of the
HD\,196885 system by exploring the two free parameters of the planet and
choosing different sets of angular variables. We find that the most likely
configurations for the planet is either nearly coplanar orbits (prograde and
retrograde), or highly inclined orbits near the Lidov-Kozai equilibrium points,
i = 44^{\circ} or i = 137^{\circ} . Among coplanar orbits, the retrograde ones
appear to be less chaotic, while for the orbits near the Lidov-Kozai
equilibria, those around \omega= 270^{\circ} are more reliable, where \omega_k
is the argument of pericenter of the planet's orbit with respect to the
binary's orbit.
From the observer's point of view (plane of the sky) stable areas are
restricted to (I1, \Omega_1) \sim (65^{\circ}, 80^{\circ}),
(65^{\circ},260^{\circ}), (115^{\circ},80^{\circ}), and
(115^{\circ},260^{\circ}), where I1 is the inclination of the planet and
\Omega_1 is the longitude of ascending node.Comment: 10 pages, 7 figures. A&A Accepte
Modeling the resonant planetary system GJ876
The two planets about the star GJ 876 appear to have undergone extensive
migration from their point of origin in the protoplanetary disk -- both because
of their close proximity to the star (30 and 60 day orbital periods) and
because of their occupying three stable orbital resonances at the 2:1
mean-motion commensurability. The resonances were most likely established by
converging differential migration of the planets leading to capture into the
resonances. A problem with this scenario is that continued migration of the
system while it is trapped in the resonances leads to orbital eccentricities
that rapidly exceed the observational upper limits of e_1 = 0.31 and e_2 =
0.05. As seen in forced 3-body simulations, lower eccentricities would persist
during migration only for an applied eccentricity damping.
Here we explore the evolution of the GJ 876 system using two-dimensional
hydrodynamical simulations that include viscous heating and radiative effects.
We find that a hydrodynamic evolution within the resonance, where only the
outer planet interacts with the disk, always rapidly leads to large values of
eccentricities that exceed those observed.
Only if mass is removed from the disk on a time scale of the order of the
migration time scale (before there has been extensive migration after capture),
as might occur for photoevaporation in the late phases of planet formation, can
we end up with eccentricities that are consistent with the observations.Comment: Paper accepted by A&A, 17 Pages, 17 Figure
Dissipation in planar resonant planetary systems
Close-in planetary systems detected by the Kepler mission present an excess
of periods ratio that are just slightly larger than some low order resonant
values. This feature occurs naturally when resonant couples undergo dissipation
that damps the eccentricities. However, the resonant angles appear to librate
at the end of the migration process, which is often believed to be an evidence
that the systems remain in resonance.
Here we provide an analytical model for the dissipation in resonant planetary
systems valid for low eccentricities. We confirm that dissipation accounts for
an excess of pairs that lie just aside from the nominal periods ratios, as
observed by the Kepler mission. In addition, by a global analysis of the phase
space of the problem, we demonstrate that these final pairs are non-resonant.
Indeed, the separatrices that exist in the resonant systems disappear with the
dissipation, and remains only a circulation of the orbits around a single
elliptical fixed point. Furthermore, the apparent libration of the resonant
angles can be explained using the classical secular averaging method. We show
that this artifact is only due to the severe damping of the amplitudes of the
eigenmodes in the secular motion.Comment: 18 pages, 20 figures, accepted to A&
On planetary mass determination in the case of super-Earths orbiting active stars. The case of the CoRoT-7 system
This investigation uses the excellent HARPS radial velocity measurements of
CoRoT-7 to re-determine the planet masses and to explore techniques able to
determine mass and elements of planets discovered around active stars when the
relative variation of the radial velocity due to the star activity cannot be
considered as just noise and can exceed the variation due to the planets. The
main technique used here is a self-consistent version of the high-pass filter
used by Queloz et al. (2009) in the first mass determination of CoRoT-7b and
CoRoT-7c. The results are compared to those given by two alternative
techniques: (1) The approach proposed by Hatzes et al. (2010) using only those
nights in which 2 or 3 observations were done; (2) A pure Fourier analysis. In
all cases, the eccentricities are taken equal to zero as indicated by the study
of the tidal evolution of the system; the periods are also kept fixed at the
values given by Queloz et al. Only the observations done in the time interval
BJD 2,454,847 - 873 are used because they include many nights with multiple
observations; otherwise it is not possible to separate the effects of the
rotation fourth harmonic (5.91d = Prot/4) from the alias of the orbital period
of CoRoT-7b (0.853585 d). The results of the various approaches are combined to
give for the planet masses the values 8.0 \pm 1.2 MEarth for CoRoT-7b and 13.6
\pm 1.4 MEarth for CoRoT 7c. An estimation of the variation of the radial
velocity of the star due to its activity is also given.The results obtained
with 3 different approaches agree to give masses larger than those in previous
determinations. From the existing internal structure models they indicate that
CoRoT-7b is a much denser super-Earth. The bulk density is 11 \pm 3.5 g.cm-3 .
CoRoT-7b may be rocky with a large iron core.Comment: 12 pages, 11 figure
Dynamics of Planetesimals due to Gas Drag from an Eccentric Precessing Disk
We analyze the dynamics of individual kilometer-size planetesimals in
circumstellar orbits of a tight binary system. We include both the
gravitational perturbations of the secondary star and a non-linear gas drag
stemming from an eccentric gas disk with a finite precession rate. We consider
several precession rates and eccentricities for the gas, and compare the
results with a static disk in circular orbit.
The disk precession introduces three main differences with respect to the
classical static case: (i) The equilibrium secular solutions generated by the
gas drag are no longer fixed points in the averaged system, but limit cycles
with frequency equal to the precession rate of the gas. The amplitude of the
cycle is inversely dependent on the body size, reaching negligible values for
km size planetesimals. (ii) The maximum final eccentricity attainable
by small bodies is restricted to the interval between the gas eccentricity and
the forced eccentricity, and apsidal alignment is no longer guaranteed for
planetesimals strongly coupled with the gas. (iii) The characteristic
timescales of orbital decay and secular evolution decrease significantly with
increasing precession rates, with values up to two orders of magnitude smaller
than for static disks.
Finally, we apply this analysis to the -Cephei system and estimate
impact velocities for different size bodies and values of the gas eccentricity.
For high disk eccentricities, we find that the disk precession decreases the
velocity dispersion between different size planetesimals, thus contributing to
accretional collisions in the outer parts of the disk. The opposite occurs for
almost circular gas disks, where precession generates an increase in the
relative velocities.Comment: 11 pages, 9 figures. Accepted in MNRA
A new analysis of the GJ581 extrasolar planetary system
We have done a new analysis of the available observations for the GJ581
exoplanetary system. Today this system is controversial due to choices that can
be done in the orbital determination. The main ones are the ocurrence of
aliases and the additional bodies - the planets f and g - announced in Vogt et
al. 2010. Any dynamical study of exoplanets requires the good knowledge of the
orbital elements and the investigations involving the planet g are particularly
interesting, since this body would lie in the Habitable Zone (HZ) of the star
GJ581. This region,for this system, is very attractive of the dynamical point
of view due to several resonances of two and three bodies present there. In
this work, we investigate the conditions under which the planet g may exist. We
stress the fact that the planet g is intimately related with the orbital
elements of the planet d; more precisely, we conclude that it is not possible
to disconnect its existence from the determination of the eccentricity of the
planet d. Concerning the planet f, we have found one solution with period
days, but we are judicious about any affirmation concernig this
body because its signal is in the threshold of detection and the high period is
in a spectral region where the ocorruence of aliases is very common. Besides,
we outline some dynamical features of the habitable zone with the dynamical map
and point out the role played by some resonances laying there.Comment: 12 pages, 9 figure
- âŠ