25 research outputs found

    Intra-Host Evolution Analyses in an Immunosuppressed Patient Supports SARS-CoV-2 Viral Reservoir Hypothesis.

    Get PDF
    Throughout the SARS-CoV-2 pandemic, several variants of concern (VOCs) have been identified, many of which share recurrent mutations in the spike glycoprotein's receptor-binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in immunosuppressed patients have been hypothesized to lead to an enrichment of such mutations and therefore drive evolution towards VOCs. Here, we present the case of an immunosuppressed patient that developed distinct populations with immune escape mutations throughout the course of their infection. Notably, by investigating the co-occurrence of substitutions on individual sequencing reads in the RBD, we found quasispecies harboring mutations that confer resistance to known monoclonal antibodies (mAbs) such as S:E484K and S:E484A. These mutations were acquired without the patient being treated with mAbs nor convalescent sera and without them developing a detectable immune response to the virus. We also provide additional evidence for a viral reservoir based on intra-host phylogenetics, which led to a viral substrain that evolved elsewhere in the patient's body, colonizing their upper respiratory tract (URT). The presence of SARS-CoV-2 viral reservoirs can shed light on protracted infections interspersed with periods where the virus is undetectable, and potential explanations for long-COVID cases

    Integrated immunovirological profiling validates plasma SARS-CoV-2 RNA as an early predictor of COVID-19 mortality.

    Full text link
    peer reviewedDespite advances in COVID-19 management, identifying patients evolving toward death remains challenging. To identify early predictors of mortality within 60 days of symptom onset (DSO), we performed immunovirological assessments on plasma from 279 individuals. On samples collected at DSO11 in a discovery cohort, high severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA (vRNA), low receptor binding domain–specific immunoglobulin G and antibody-dependent cellular cytotoxicity, and elevated cytokines and tissue injury markers were strongly associated with mortality, including in patients on mechanical ventilation. A three-variable model of vRNA, with predefined adjustment by age and sex, robustly identified patients with fatal outcome (adjusted hazard ratio for log-transformed vRNA = 3.5). This model remained robust in independent validation and confirmation cohorts. Since plasma vRNA’s predictive accuracy was maintained at earlier time points, its quantitation can help us understand disease heterogeneity and identify patients who may benefit from new therapies

    Tie-Over Bolster Pressure Dressing Improves Outcomes of Skin Substitutes Xenografts on Athymic Mice

    No full text
    The efficacy of skin substitutes is established for the treatment of burn injuries, but its use is not limited to this condition. This technology has the potential to improve the treatment of various conditions by offering highly advanced and personalized treatments. In vivo studies are challenging but essential to move to clinical use in humans. Mice are the most widely used species in preclinical studies, but the main drawback of this model is the limited surface area of the graft in long-term transplantation studies caused by the displacement and the contraction of the graft. We improved the conventional surgical procedures by stabilizing the chamber covering the graft with intramuscular sutures and by adding a tie-over bolster dressing. The current study was therefore performed to compare outcomes of skin grafts between the conventional and optimized skin graft model. Human self-assembled skin substitutes (SASSs) were prepared and grafted to athymic mice either by the conventional method or by the new grafting method. Graft healing and complications were assessed using digital photographs on postoperative days 7, 14, and 21. Similar structure and organization were observed by histological staining. The new grafting method reduced medium and large displacement events by 1.26-fold and medium and large contraction events by 1.8-fold, leading to a 1.6-fold increase in graft surface area compared to skin substitutes grafted with the usual method. This innovation ensures better reproducibility and consistency of skin substitute transplants on mice

    Elicitation of Cluster A and Co-Receptor Binding Site Antibodies Are Required to Eliminate HIV-1 Infected Cells

    No full text
    HIV-1-infected individuals raise a polyclonal antibody response targeting multiple envelope glycoprotein (Env) epitopes. Interestingly, two classes of non-neutralizing CD4-induced (CD4i) antibodies, present in the majority of HIV-1-infected individuals have been described to mediate antibody-dependent cellular cytotoxicity (ADCC) in the presence of small CD4 mimetic compounds (CD4mc). These antibodies recognize the coreceptor binding site (CoRBS) and the constant region one and two (C1C2 or inner domain cluster A) of the gp120. In combination with CD4mc they have been shown to stabilize an antibody-vulnerable Env conformation, known as State 2A. Here we evaluated the importance of these two families of Abs in ADCC responses by immunizing guinea pigs with gp120 immunogens that have been modified to elicit or not these types of antibodies. Underlying the importance of anti-CoRBS and anti-cluster A Abs in stabilizing State 2A, ADCC responses were only observed in the presence of these two types of CD4i antibodies. Altogether, our results suggest that these two families of CD4i antibodies must be taken into account when considering future strategies relying on the use of CD4mc to eliminate HIV-1-infected cells in vivo

    SARS-CoV-2 Accessory Protein ORF8 Decreases Antibody-Dependent Cellular Cytotoxicity

    No full text
    Viruses use many different strategies to evade host immune responses. In the case of SARS-CoV-2, its Spike mutates rapidly to escape from neutralizing antibodies. In addition to this strategy, ORF8, a small accessory protein encoded by SARS-CoV-2, helps immune evasion by reducing the susceptibility of SARS-CoV-2-infected cells to the cytotoxic CD8+ T cell response. Interestingly, among all accessory proteins, ORF8 is rapidly evolving and a deletion in this protein has been linked to milder disease. Here, we studied the effect of ORF8 on peripheral blood mononuclear cells (PBMC). Specifically, we found that ORF8 can bind monocytes as well as NK cells. Strikingly, ORF8 binds CD16a (FcγRIIIA) with nanomolar affinity and decreases the overall level of CD16 at the surface of monocytes and, to a lesser extent, NK cells. This decrease significantly reduces the capacity of PBMCs and particularly monocytes to mediate antibody-dependent cellular cytotoxicity (ADCC). Overall, our data identifies a new immune-evasion activity used by SARS-CoV-2 to escape humoral responses

    Incorporating the Cluster A and V1V2 Targets into a Minimal Structural Unit of the HIV-1 Envelope to Elicit a Cross-Clade Response with Potent Fc-Effector Functions

    No full text
    The generation of a potent vaccine for the prevention and/or control of HIV-1 has been unsuccessful to date, despite decades of research. Existing evidence from both infected individuals and clinical trials support a role for non-neutralizing or weakly neutralizing antibodies with potent Fc-effector functions in the prevention and control of HIV-1 infection. Vaccination strategies that induce such antibodies have proven partially successful in preventing HIV-1 infection. This is largely thought to be due to the polyclonal response that is induced in a vaccine setting, as opposed to the infusion of a single therapeutic antibody, which is capable of diverse Fc-effector functions and targets multiple but highly conserved epitopes. Here, we build on the success of our inner domain antigen, ID2, which incorporates conformational CD4-inducible (CD4i) epitopes of constant region 1 and 2 (C1C2 or Cluster A), in the absence of neutralizing antibody epitopes, into a minimal structural unit of gp120. ID2 has been shown to induce Cluster A-specific antibodies in a BALB/c mouse model with Fc-effector functions against CD4i targets. In order to generate an immunogen that incorporates both epitope targets implicated in the protective Fc-effector functions of antibodies from the only partially successful human vaccine trial, RV144, we incorporated the V1V2 domain into our ID2 antigen generating ID2-V1V2, which we used to immunize in combination with ID2. Immunized BALB/c mice generated both Cluster A- and V1V2-specific antibodies, which synergized to significantly improve the Fc-mediated effector functions compared to mice immunized with ID2 alone. The sera were able to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). We therefore conclude that ID2-V1V2 + ID2 represents a promising vaccine immunogen candidate for the induction of antibodies with optimal Fc-mediated effector functions against HIV-1

    A Recent SARS-CoV-2 Infection Enhances Antibody-Dependent Cellular Cytotoxicity against Several Omicron Subvariants following a Fourth mRNA Vaccine Dose

    No full text
    Since the beginning of the SARS-CoV-2 pandemic, several variants of concern (VOCs), such as the Alpha, Beta, Gamma, Delta and Omicron variants, have arisen and spread worldwide. Today, the predominant circulating subvariants are sublineages of the Omicron variant, which have more than 30 mutations in their Spike glycoprotein compared to the ancestral strain. The Omicron subvariants were significantly less recognized and neutralized by antibodies from vaccinated individuals. This resulted in a surge in the number of infections, and booster shots were recommended to improve responses against these variants. While most studies mainly measured the neutralizing activity against variants, we and others previously reported that Fc-effector functions, including antibody-dependent cellular cytotoxicity (ADCC), play an important role in humoral responses against SARS-CoV-2. In this study, we analyzed Spike recognition and ADCC activity against several Omicron subvariants by generating cell lines expressing different Omicron subvariant Spikes. We tested these responses in a cohort of donors, who were recently infected or not, before and after a fourth dose of mRNA vaccine. We showed that ADCC activity is less affected than neutralization by the antigenic shift of the tested Omicron subvariant Spikes. Moreover, we found that individuals with a history of recent infection have higher antibody binding and ADCC activity against all Omicron subvariants than people who were not recently infected. With an increase in the number of reinfections, this study helps better understand Fc-effector responses in the context of hybrid immunity
    corecore