4 research outputs found

    Sequence and structure of the mouse gene coding for the largest neurofilament subunit.

    Get PDF
    We have determined the complete nucleotide sequence of the mouse gene encoding the neurofilament NF-H protein. The C-terminal domain of NF-H is very rich in charged amino acids (aa) and contains a 3-aa sequence, Lys-Ser-Pro, that is repeated 51 times within a stretch of 368 aa. The location of this serine-rich repeat in the phosphorylated domain of NF-H indicates that it represents the major protein kinase recognition site. The nfh gene shares two common intron positions with the nfl and nfm genes, but has an additional intron that occurs at a location equivalent to one of the introns in non-neuronal intermediate filament-coding genes. This additional nfh intron may have been acquired via duplication of a primordial intermediate filament gene

    Angelman syndrome in an inbred family

    Get PDF
    Angelman syndrome (AS) is characterized by severe mental retardation, absent speech, puppet-like movements, inappropriate laughter, epilepsy, and abnormal electroencephalogram. The majority of AS patients (≃ 65%) have a maternal deficiency within chromosomal region 15q11-q13, caused by maternal deletion or paternal uniparental disomy (UPD). Approximately 35% of AS patients exhibit neither detectable deletion nor UPD, but a subset of these patients have abnormal methylation at several loci in the 15q11-q13 interval. We describe here three patients with Angelman syndrome belonging to an extended inbred family. High resolution chromosome analysis combined with DNA analysis using 14 marker loci from the 15q11-q13 region failed to detect a deletion in any of the three patients. Paternal UPD of chromosome 15 was detected in one case, while the other two patients have abnormal methylation at D15S9, D15S63, and SNRPN. Although the three patients are distantly related, the chromosome 15q11-q13 haplotypes are different, suggesting that independent mutations gave rise to AS in this family

    Homogeneous Assays for Single-Nucleotide Polymorphism Typing Using AlphaScreen

    No full text
    AlphaScreen technology allows the development of high-throughput homogeneous proximity assays. In these assays, signal is generated when 680 nm laser light irradiates a donor bead in close proximity to an acceptor bead. For the detection of nucleic acids, donor and acceptor beads are brought into proximity by two bridging probes that hybridize simultaneously to a common target and to the generic oligonucleotides attached covalently to the beads. This method allows the detection of as little as 10 amole of a single-stranded DNA target. The combination of AlphaScreen with allele-specific amplification (ASA) and allele-specific hybridization (ASH) has allowed the development of two homogenous single-nucleotide polymorphism (SNP) genotyping platforms. Both types of assay are very robust, routinely giving accurate genotyping results with < 2 ng of genomic DNA per genotype. An AlphaScreen validation study was performed for 12 SNPs by using ASA assays and seven SNPs by using ASH assays. More than 580 samples were genotyped with accuracy >99%. The two assays are remarkably simple, requiring no post-PCR manipulations. Genotyping has been performed successfully in 96- and 384-well formats with volumes as small as 2 μL, allowing a considerable reduction in the amount of reagents and genomic DNA necessary for genotyping. These results show that the AlphaScreen technology can be successfully adapted to high-throughput genotyping

    The spectrum of mutations in UBE3A causing Angelman syndrome

    No full text
    Angelman syndrome (AS) is characterized by mental retardation, absence of speech, seizures and motor dysfunction. AS is caused by maternal deletions for chromosome 15q11-q13, paternal uniparental disomy (UPD), imprinting defects or loss-of-function mutations in the UBE3A locus which encodes E6-AP ubiquitin-protein ligase. The UBE3A gene is imprinted with paternal silencing in human brain and similar silencing of the Ube3a locus in Purkinje cells and hippocampal neurons in the mouse. We have sequenced the major coding exons for UBE3A in 56 index patients with a clinical diagnosis of AS and a normal DNA methylation pattern. The analysis identified disease-causing mutations in 17 of 56 patients (30%) including 13 truncating mutations, two missense mutations, one single amino acid deletion and one stop codon mutation predicting an elongated protein. Mutations were identified in six of eight families (75%) with more than one affected case, and in 11 of 47 isolated cases (23%); no mutation was found in one family with two siblings, one with a typical and one with an atypical phenotype. Mutations were de novo in nine of the 11 isolated cases. An amino acid polymorphism of threonine substituted for alanine at codon 178 was identified, and a 3 bp length polymorphism was found in the intron upstream of exon 8. In all informative cases, phenotypic expression was consistent with imprinting with a normal phenotype when a mutation was on the paternal chromosome and an AS phenotype when a mutation was on the maternal chromosome. Laboratory diagnosis and genetic counseling for AS are complex, and mutation analysis is valuable in clinically typical AS patients with a normal methylation analysis
    corecore