7 research outputs found

    Small-Scale Extrusion of Corn Masa By-Products

    Get PDF
    Corn masa by-product streams are high in fiber and are amenable for utilization in livestock feed rations. This approach is a potentially viable alternative to landfilling, the traditional disposal method for these processing residues. Suspended solids were separated from a masa processing waste stream, blended with soybean meal at four levels (0, 10, 20, and 30% wb), and extruded in a laboratory-scale extruder at speeds of 50 rpm (5.24 rad/sec) and 100 rpm (10.47 rad/sec) with temperature profiles of 80-90-100°C and 100-110-120°C. Processing conditions, including dough and die temperatures, drive torque, specific mechanical energy consumption, product and feed material throughput rates, dough apparent viscosity, and dough density, were monitored during extrusion. The resulting products were subjected to physical and nutritional characterization to determine the effects of processing conditions for these blends. Extrudate analysis included moisture content, water activity, crude protein, in vitro protein digestibility, crude fat, ash, product diameter, expansion ratios, unit and true density, color, water absorption and solubility, and durability. All blends were suitable for extrusion at the processing conditions used. Blend ratio had little effect on either processing parameters or extrudate properties; extrusion temperature and screw speed, on the other hand, significantly affected both processing and product properties

    Quantification of Physical and Chemical Properties, and Identification of Potentially Valuable Components from Fuel Ethanol Process Streams

    Get PDF
    Wider exploration of ethanol coproduct uses is necessary as the ethanol industry continues to face challenges. Currently, process streams such as thin stillage and condensed distillers solubles (CDS) are processed into distillers dried grains with solubles and used as animal feeds, but other higher value opportunities may exist. The objective of this study was to identify chemical components and quantify physical properties of CDS and thin stillage. Protein, organic acid, and sugar profiles were determined. Zein protein was identified, and glycerol was determined to have a concentration of 18.8 g/L in thin stillage and 63.2 g/L in CDS. Physical properties including density, thermal conductivity, thermal diffusivity, and rheological behaviors were also examined. Thermal conductivity of thin stillage and CDS was approximately 0.54 and 0.45 W/m°C, respectively. Quantification of the physical properties and identification of the chemical constituents pave the way for exploration of new value-added uses for thin stillage and CDS

    Mathematical Models of the Mammalian Urine Concentrating Mechanism

    No full text
    corecore